| BALL VALVES |
 METAL SEATED
 ½" - 24" | Class 150 - Class 1500
 DN 15 - DN 300 I PN 16 - PN 40

JC offers also a large range of metal seated ball valves for diferent services (slurries, pulp and liquors, high temperature, abrasive or sticking fluids, control).

1) Bubble tight sealing up to $327^{\circ} \mathrm{C}$ and Class V up to $500^{\circ} \mathrm{C}$
2) Low coefficient of friction
) Excellent sliding and running properties
) Hardens the complete surface of ball and seats

WHY METAL SEATED BALL VALVES?

METAL SEATED BALL VALVES ARE MAINLY USED FOR HEAVY DUTY APPLICATIONS SUCH AS:

)) High temperatures: above $260{ }^{\circ} \mathrm{C}$ the use of soft seats is not recommended.
)) Abrassive media: even small particles can damage soft seats.
) High Velocity in opening/closing cycles: this action can perfectly deform the soft ring and destroy the seat.

HARDERING TREATMENTS

HT-65

Max. Temperature: $500^{\circ} \mathrm{C}$
Corrosion Resistance: Medium
Abrasion Resistance: Medium
This is an exclusive treatment developed by JC with two main advantages, first all the ball and seat surface is hardened and second there is no additional overlay on the seat surface. This gives a very good thightness and a lower torque. The surface is hardened to 70 Rockwell C and it is valid to work upto $500^{\circ} \mathrm{C}$.

CT-70

Max. Temperature: $550^{\circ} \mathrm{C}$
Corrosion Resistance: Medium
Abrasion Resistance: High
Is a Tungsten Carbide coating in a metallic matrix bonded. Mechanically to the base material by HVOF methods. This treatment gives a very good resistance to abrassion and impact and is suitable to work upon $550^{\circ} \mathrm{C}$.

CC-60

Max. Temperature: $800^{\circ} \mathrm{C}$
Corrosion Resistance: High
Abrasion Resistance: High
Is a Chromium Carbide coating in a nickel-chrome base in a metallic matrix bonded mechanically to the base material by HVOF methods. This treatment gives a very good resistance to abrassion and is the best choice for severe corrosion applications. It is suitable to work up to $800^{\circ} \mathrm{C}$.

DIFFERENT SEAT DESIGNS

Metallic Seat
with O'ring

(5) Seat
(32) Helicol spring
(33) (37) O'rings
(13) (54) Graphite gasket
(52) O'ring

(5) Seat
(13) Spiralwound
(31) Seat carrier
(32) Helicol spring
(54) Graphite gasket

Metallic Seat
for Floating Valves

(5) Seat
(29) Washer
(33) O'ring
(32) Belleville spring
(54) Graphite gasket

RANGE OF METAL SEATED BALL VALVES

JC can produce the following metal seated ball valves:

Pressure Class	Floating	Monoblock	Trunnion
150	1/2" upto 8"	-	2" upto 24"
300	1/2" upto 4"	-	2" upto 24"
600	1/2" upto 2"	-	2 " upto 24"
800	-	1/2" upto 2"	-
900	-	-	$2^{\prime \prime}$ upto 12 "
1500	-	1/2" upto 2"	2 " upto 8"

PRODUCTION OF METAL SEATED BALL VALVES

Metal seated vall valves are mainly used for heavy duty applications.

One of the main avantages of using JC metal seated ball valves is the fact that we can transform a soft seated stock valves into a metal seated valve.

THE STEPS TO BE DONE ARE:

)) Re-machining of the body.

) Lapping of the ball and seats.
)) Hardening treatment to ball and seats.
>) Final adjustment of the ball with its seats.
) Assembly and test.

Pressure - Temperature

DETAIL B

(*) Dimensions of diameters of drills ISO 5211 refer to table from page 60.

Fig. 3516 (PN 16)

DN	$\emptyset P$	L	L.	ØR	$n \times \emptyset S$	ØT	H	M	ISO 5211	B	C	\|	J	$\begin{gathered} \text { WEIGHT } \\ 3516 \end{gathered}$	$\begin{gathered} \text { WEIGHT } \\ 3316 \end{gathered}$	TORQUE	KV
65	65	170	76	145	4×18	185	169	348	F07	44	19,7	M 22×1.5	16	16	18,3	180	550
80	80	180	82	160	8×18	200	207	445	F10	44,5	19,7	M 25×1.5	18	22	25	250	1000
100	100	190	90	180	8×18	220	231	495	F10	56,5	29,2	M 28×1.5	20	32	36	390	1650
125	125	325	120	210	8×18	250	262	698	F12	56	27,6	M 35×2	25	52,5	-	500	3000
150	151	350	135	240	8×22	285	298	698	F12	68	38,5	M 40×1.5	29	76	-	800	4200
200	203	400	200	295	12×22	340	352	868	F14	72	39	$\mathrm{M} 45 \times 2$	32	111	-	1200	9000

Fig. 3540 (PN 40)																	
DN	ØР	L	L1	ØR	$\mathrm{n} \times$ øS	ØТ	H	M	ISO 5211	B	C	1	J	$\begin{aligned} & \text { WEIGHT } \\ & 3540 \end{aligned}$	$\begin{aligned} & \text { WEIGHT } \\ & 3340 \end{aligned}$	TORQUE	Kv
15	15	115	53	65	4×14	95	110	164	F05	11,2	5,7	M 12×1.5	9	2,8	3	26	20
20	20	120	52	75	4×14	105	117	164	F05	13,2	9,2	M 12×1.5	9	3,6	-	35	40
25	25	125	49	85	4×14	115	129	164	F05	22,7	10,2	M12x1.5	9	5	5,2	40	75
32	32	130	54	100	4×18	140	131	210	F05	32	13,7	M16x1.5	12	7	7,6	60	130
40	40	140	55	110	4×18	150	148	213	F07	41,5	19,2	M 18×1.5	13	9	9,6	90	170
50	50	150	61	125	4×18	165	155	213	F07	41,5	19,2	M 18×1.5	13	12	12,9	120	270
65	65	170	76	145	8×18	185	169	348	F07	44	19,7	M 22×1.5	16	17	-	160	550
80	80	180	75	160	8×18	200	207	445	F10	44,5	19,7	M 25×1.5	18	23	-	254	1000
100	100	190	91	190	8×22	235	231	495	F10	56,5	29,2	M 28×1.5	20	35	-	-	1650
125	125	325	120	220	8×26	270	262	698	F12	56	27,6	M 35×2	25	57	-	-	3000
150	151	350	135	250	8×26	300	298	698	F12	68	38,5	M40×1.5	29	83,5	-	-	4200

Fig. 3515 (Class 150)

DN	$\emptyset \mathrm{P}$	L	L1	$\emptyset \mathrm{R}$	$n \times \varnothing S$	$\varnothing T$	H	M	ISO 5211	B	C		J	WEIGHT	TORQUE	Kv
15 (1/2")	15	108	47	60,3	4×15,9	90	110	164	F05	11,2	5,7	M12x1.5	9	2	22	20
20 (3/4")	20	117	50	69,9	$4 \times 15,9$	100	117	164	F05	13,2	9,2	M12x1.5	9	3	32	40
25 (1")	25	127	52	79,4	$4 \times 15,9$	110	129	164	F05	22,7	10,2	M 12×1.5	9	3,5	39	75
40 (11/2")	40	165	65	98,4	4×15,9	125	148	213	F07	41,5	19,2	M18×1.5	13	8	59	170
50 (2")	50	178	61	120,7	4×19	150	155	213	F07	41,5	19,2	M18×1.5	13	11	100	270
65 ($2^{1 / 2} 2^{\prime \prime}$)	65	190	75	139,7	4×19	180	169	348	F07	44	19,7	M 22×1.5	16	16	140	550
80 (3")	80	203	79	152,4	4×19	190	207	445	F10	44,5	19,7	M 25×1.5	18	23	260	1000
100 (4")	100	229	90	190,5	8×19	230	231	495	F10	56,5	29,2	M 28×1.5	20	38	440	1650
150 (6")	151	394	174	241,3	$8 \times 22,2$	280	298	698	F12	68	38,5	M 40×1.5	29	88	800	4200
200 (8")	203	457	200	298,5	$8 \times 22,2$	345	352	868	F14	72	39	M 45×2	32	155	1100	9000

Fig. 3530 (Class 300)

DN	$\emptyset \mathrm{P}$	L	L1	$\emptyset \mathrm{R}$	$\mathrm{n} \times \emptyset \mathrm{S}$	øT	H	M	ISO 5211	B	C		J	WEIGHT	TORQUE	Kv
15 (112")	15	140	60	66,7	$4 \times 15,9$	95	110	164	F05	11,2	5,7	M12x1.5	9	3	22	20
20 (3/4")	20	152	65	82,6	4×19	115	117	164	F05	13,2	9,2	M 12×1.5	9	4	40	40
25 (1")	25	165	70	88,9	4×19	125	129	164	F05	22,7	10,2	M12x1.5	9	5	45	75
40 (11/2")	40	190	80	114,3	$4 \times 22,2$	155	148	213	F07	41,5	19,2	M18×1.5	13	11	80	170
50 (2")	50	216	83	127	8×19	165	155	213	F07	41,5	19,2	M18×1.5	13	14	150	270
80 (3")	80	283	118	168,3	$8 \times 22,2$	210	207	445	F07	44,5	19,7	M 25×1.5	18	32	250	550
100 (4")	100	305	133	200	8×22,2	255	231	495	F10	56,5	29,2	M 28×1.5	20	52	500	1000
150 (6")	151	403	160	269,9	$12 \times 22,2$	320	298	698	F10	68	38,5	M 40×1.5	29	94	-	1650

Materials
 METAL SEATED UDV

Item	Description	C.S. BODY		S.S. BODY
1	Body	A 105		A 479 Type 316
2	Body connector	A 105		A 479 Type 316
3	Ball		AISI 316 + HT-65 (*)	
4	Stem		17-4 PH + HT-65 (*)	
5	Metallic seat		AISI $316+$ HT-65	
6	Wrench		GGG-40	
7	Gland nut	Zinc plated carbon st.		AISI 303
8	Disk spring	Carbon St.		E.N.P. Carbon St.
9	Stop plate	Carbon St.		AISI 304
10	Gland		AISI $316+$ HT-65	
11	Gland packing		Graphite	
12	Stem thrust seal		AISI $316+$ HT-65	
14	Stop pin	Carbon St.		Stainless St.
16	Bolt	DIN 933 5.6 Zinc plated		DIN 933 A2
17	Washer	Carbon St.		Stainless St.
18	Thrust washer		AISI $316+$ HT-65	
32	Disk spring		Inconel 718	
41	Spacer	Carbon St.		Stainless St.
54	Seat gasket		Graphite	
72	O'ring		AFlas	

Pressure - Temperature

(*) Diameter of drills ISO $5211=n \times F$.

Fig. UDV (Class 800)																		
DN	$\emptyset \mathrm{P}$	L	L1	R	N	h	H	M	SO 5211	B	C	ØD	$\mathrm{n} \times \mathrm{F}$	1	J	WEIGHT	TORQUE	Kv
$1 / 2$ "	15	90	45	NPT	37,5	32	102	164	F04	18,4	7,8	42	$4 \times \mathrm{M} 5$	M12 x1,5	9	3,5	30	11
3/4"	15	110	55	NPT	37,5	32	102	164	F04	18,4	7,8	42	$4 \times \mathrm{M} 5$	M12 x1,5	9	4,5	30	11
$1 "$	20	120	60	NPT	42,5	35,5	106	164	F05	20	8,5	50	$4 \times \mathrm{M} 6$	M12 x1,5	9	5	37	14
$11 / 2^{\prime \prime}$	28	150	75	NPT	60	50	111	210	F05	31,5	15,5	50	$4 \times \mathrm{M} 6$	M16 x1,5	12	6	102	30
2"	36	180	90	NPT	67,5	60	128	213	F07	38,5	19	70	$4 \times \mathrm{M} 8$	M18 x1,5	13	10	173	72
Fig. UDV (Class 1500)																		
DN	ØР	L	L1	R	N	h	H	M	SO 5211	B	C	$\emptyset \mathrm{D}$	$\mathrm{n} \times \mathrm{F}$	1	J	WEIGHT	TORQUE	Kv
$1 / 2$ "	15	90	45	NPT	37,5	32	102	164	F04	18,4	7,8	42	$4 \times \mathrm{M} 5$	M12x1,5	9	3,5	39	11
$3 / 4$ "	15	110	55	NPT	37,5	32	102	164	F04	18,4	7,8	42	$4 \times \mathrm{M} 5$	M12x1,5	9	4,5	39	11
$1 "$	20	120	60	NPT	42,5	35,5	106	164	F05	20	8,5	50	$4 \times \mathrm{M} 6$	M12x1,5	9	5	54	14
$11 / 2^{\prime \prime}$	28	150	75	NPT	60	50	111	210	F05	31,5	15,5	50	$4 \times \mathrm{M} 6$	M16x1,5	12	6	161	30
2"	36	180	90	NPT	67,5	60	128	213	F07	38,5	19	70	$4 \times \mathrm{M} 8$	M18x1,5	13	10	287	72

