# Volume 5

# PROTEGO® Pressure/Vacuum Relief Valves end-of-line



# Volume 5



#### **Function and Description**

The function of pressure/vacuum valves for relief and conservation and the corresponding applications is discussed in "TechnicalFundamentals"(→Vol.1). In this chapter PROTEGO®'s product line of pressure/vacuum relief valves in end-of-line application is presented.

These are special devices that function as an **end-of-line valve** to protect against pressure and vacuum. The valves may be designed as pipe away version which can be connected to a vent header to process vapors.

**Pressure relief valves** prevent vapor loss up to the adjusted set pressure and offer reliable protection against excess pressure.

**Vacuum relief valves** prevent the unallowable entrance of air up to the adjusted set pressure and offer reliable protection against vacuum.

Pressure/vacuum relief valves perform all of the above tasks.

**PROTEGO®** pressure/vacuum disc relief valves have weight-loaded or spring-loaded valve pallets.

**PROTEGO®** pressure/vacuum relief valves with a full-lift disc discharge the volumetric flow within 10% overpressure from the set pressure up to full lift. After the response, the valve pallet immediately transitions to a full lift (Figs. 1 and 2).

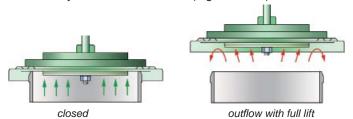



Fig. 1: Outflow with a full-lift disc and air cushion seal

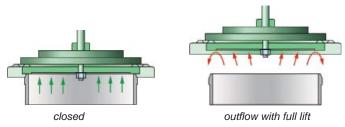



Fig. 2: Outflow with a full-lift disc and metal seal

This is attained by precisely harmonizing the diameter and height of the valve pallet rim with the adapted, lapped valve seat. In addition, a flow-enhancing design reinforces the overall effect on the outflow side. These valve pallets are used in end-of-line valves and in-line valves. The arrangement of valve pallet guidance and seal is combined in the term valve pallet.

Given the right size, the unique **10% technology** of the valves enables a set pressure that is just 10% below the maximum allowable tank pressure. For tanks with emergency relief vents the opening pressure of the relief valve needs to be below the set pressure of the emergency relief vent. The valve immediately opens to a full lift under a full load like a classic safety valve but in response to minimum changes in pressure. The full-lift discs are the result

of years of development. The ingenious engineering enables reliable valve pallet operation at a full load. The highly developed PROTEGO® manufacturing technology has produced a seal that is far superior to the conventional standard. This feature is supported by valve seats made of high-quality stainless steel and individually lapped valve pallets or valve seats with an air cushion seal, among other things.

**Diaphragm valves** are pressure/vacuum relief valves with a flexible diaphragm. Their special design is to satisfactorily handle problem products, even at extremely low temperatures below freezing, a thousand times over.

#### Special features and advantages

- Large flows with only a slight pressure drop
- Pressure setting close to the opening pressure (PROTEGO® 10% technology) for optimum retention of pressure in the system
- Seal superior to the normal standard values, which minimizes product loss
- The valve pallet is guided within the housing to protect against the weather

#### **Preferred Applications**

PROTEGO® pressure/vacuum relief valves are used as inbreathing and outbreathing valves, pressure relief valves, conservation valves, for simple control, and for venting tanks and equipment when an unallowable vacuum or pressure is exceeded. They are used for low pressures, e.g. in pressure ranges in which classic safety valves cannot be used due to their limited performance characteristics. PROTEGO® valves are available as pressure relief valves, vacuum relief valves, or as combined pressure/vacuum relief valves.

PROTEGO® diaphragm valves are used for problem products and low temperatures.

**Pilot valves** are advantageous for special control responses or when a tight seal is required up to the point at which the valve starts to open.

High-velocity-vent valves are used on tanker ships and for special land uses.

#### Installation and servicing

The valves come with detailed installation and servicing instructions.

Shipping braces are installed for safe transportation. Make sure that the transportation locks are removed before installing the valves. Startup checklists help to properly set up the valves for use.

#### Selection and sizing

To operate the system properly, the right valve is to be selected.

The criteria for selecting the right device are:

**Function** – a pressure relief valve, a vacuum relief valve, or a combined pressure/vacuum relief valve, with a pipe-away connection if needed.

**Design** – a combined end-of-line valve or separate pressure relief and vacuum relief valves with a perpendicular connection or horizontal connection. The devices are weight-loaded; therefore the valves are to be installed vertically.

The adjusted set pressure – the standard maximum allowable (tank) pressure minus 10% overpressure; it determines the combination of materials for the disc.

**Type of seal** – for disc valves according to the pressure level, either with an air cushion seal, or with a metal seal to provide an extremely tight seal.

**Special operating conditions** – for viscous and adhesive media, for frost-protected operation, or for use with polymerizing products.

The **nominal diameter** of the valve is generally determined by the connecting flange of the pipe, tank, or system part, or by the design specified in the performance diagram. To size a valve, the flow must be known for the overpressure output (outbreathing) and vacuum output (inbreathing). The nominal diameter or number of valves may have to be adjusted. Take into account potential system counterpressure when connecting a pipe.

#### Sizing

The **valve size** results from the volume flow which has to be vented to avoid an increase above the maximum allowable pressure or vacuum. Certified volume flow diagrams are used for sizing. For correct sizing the operating conditions and the pressure drops of the piping system (including other installed devices) and superimposed backpressures have to be taken into account.

Detailed procedures and examples for sizing are described in "Technical Fundamentals" (see Volume 1).

#### Example 1

**Given:** Volume flow  $\dot{V}_{max}$  in m<sup>3</sup>/h / CFH (e.g. for in- or outbreathing of a storage tank this is the sum of the pump capacity and the thermal breathing requirement) and maximum allowable opening pressure (e.g. tank pressure)  $p_T$  in mbar / inch W.C.

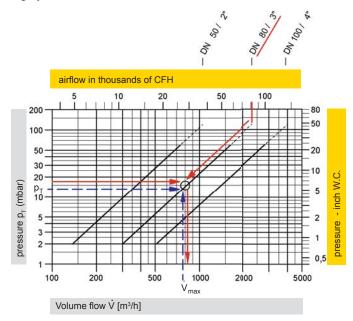
Requested: Valve size DN

**Procedure:** The intersection point of  $\dot{V}_{max}$  and  $p_T$  determines the required valve size. Opening pressure = the maximum allowable tank pressure. The volume flow diagrams show the volume flow as function of the opening pressure for a fully open valve.

The set pressure of the valve has to be determined so that the calculated volume flow can safely be discharged. For a valve

which needs 10% overpressure to reach full lift the set pressure may be chosen 10% below the fully open pressure (e.g. maximum allowable tank pressure). Attention: pressure drop of piping systems and other installed devices have to be considered!

Many conventional valves need 100% overpressure to reach full lift. In these cases the set pressure may be just half of the maximum allowable tank pressure. Consequently these valves open earlier and avoidable product losses occur.


#### Example 2

Alternatively the valve performance has to be checked if the size and maximum allowable pressure are provided.

Given: Connection nozzle size and maximum allowable opening pressure (e.g. tank pressure) p in mbar / inch W.C.

Required: Volume flow in  $m^3/h$  / CFH, set pressure  $p_A$  in mbar / inch W.C.

Procedure: From the intersection point of the straight line of p and the valve performance curve of the specific valve size the volume flow  $\dot{V}_{max}$  is determined. The volume flow of the set pressure  $p_A$  may be 10%, (PROTEGO® technology) or 40% or 100% below the opening pressure  $p_T$ . Attention: pressure drop of piping systems and other installed devices have to be considered!



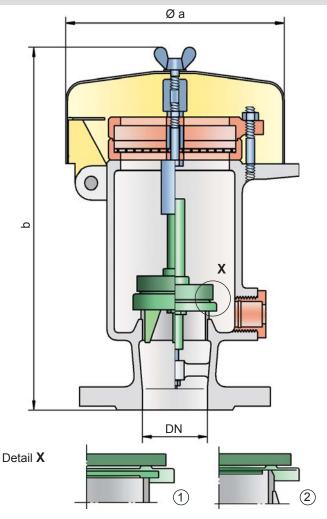
The required set pressure (= start of opening) will be the opening pressure (valve fully open) minus the characteristic overpressure.

For PROTEGO® valves and end of line devices the overpressure characteristic is 10% unless otherwise stated. Within 10% overpressure the valve pallet will reach full lift. A further increase in flow performance will follow the pressure volume flow diagram.

Material selection is based on plant and engineering specifications.

for safety and environment

## PROTEGO® Pressure/Vacuum-Relief-Valves - end-of-line


|          |               |                      | pres                                                                                                 | sure setting                                     | Design<br>O = horizontal connection<br>X = vertical connection | ling<br>sealing                          | for non-standard operating parameters | for critical Medium<br>(Polymerisation, Cor<br>rosion, Cristallisation) | jacket,<br>coil                     |                 |
|----------|---------------|----------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-------------------------------------|-----------------|
|          | Туре          | Size                 | positive<br>setting range<br>mbar /<br>inch W.C.                                                     | negative<br>setting range<br>mbar /<br>inch W.C. | Design<br>O = horizont<br>X = vertical                         | O = soft sealing<br>X = metallic sealing | O = for non-<br>operatin              | O = for critic<br>(Polyme<br>rosion, (                                  | O = Heating jacket,<br>Heating coil | Page            |
| Pressure | Relief Valves | s, weight pal        | let type                                                                                             |                                                  |                                                                |                                          |                                       |                                                                         |                                     |                 |
| Î        | P/EL          | 50 - 80<br>2" - 3"   | +3.5 up to +210/<br>+1.4 up to +84                                                                   |                                                  | Х                                                              | 0/X                                      |                                       |                                                                         | 0                                   | 176 - 177       |
| Ť        | P/ELR         | 80 - 100<br>3" - 4"  | +3.5 up to +210/<br>+1.4 up to +84                                                                   |                                                  | Х                                                              | 0 / X                                    |                                       |                                                                         | 0                                   | 178 - 179       |
|          | SD/BS-H       | 80-200<br>3" - 8"    | +5 up to +210/<br>+2 up to +84                                                                       |                                                  | Х                                                              | Х                                        | 0                                     |                                                                         | 0                                   | 180 - 181       |
| Н        | D/SVL         | 50-300<br>2" - 12"   | +2.0 up to +60/<br>+0.8 up to +24                                                                    |                                                  | Х                                                              | 0/X                                      |                                       |                                                                         |                                     | 182 - 183       |
|          | ER-V-LP       | 200-700<br>8" - 28"  | +3.4 up to +15/<br>+1.36 up to +6                                                                    |                                                  | х                                                              | 0                                        |                                       |                                                                         | 0                                   | 184 - 185       |
| ij       | ER/V          | 200-700<br>8" - 28"  | DN 200-350:<br>+5 up to +40/<br>+2 up to +16<br>DN 400-700:<br>+5 up to +25/<br>+2 up to +10         |                                                  | х                                                              | 0                                        |                                       |                                                                         | 0                                   | www.protego.com |
| 宜        | ER/VH         | 200-700<br>8" - 28"  | DN 200-350:<br>>+40 up to +60/<br>>+16 up to +24<br>DN 400-700:<br>>+25 up to +60/<br>>+10 up to +24 |                                                  | Х                                                              | 0                                        |                                       |                                                                         |                                     | 186 - 187       |
| CA S     | ER/V-F        | 200-700<br>8" - 28"  | >+60 up to +500/<br>>+24 up to +200                                                                  |                                                  | Х                                                              | 0                                        |                                       |                                                                         |                                     | 188 - 189       |
| ijį      | D/KSM         | 50-200<br>2" - 8"    | +5.0 up to +100/<br>+2.0 up to +40                                                                   |                                                  | Х                                                              | 0                                        | 0                                     | 0                                                                       |                                     | 190 - 191       |
| Vacuum R | Relief Valves | , weight palle       | et type                                                                                              |                                                  | ı                                                              |                                          |                                       |                                                                         |                                     |                 |
|          | SV/E-1-0      | 50 - 300<br>2" - 12" |                                                                                                      | -2.0 up to -60 /<br>-0.8 up to -24               | 0                                                              | 0 / X                                    |                                       |                                                                         | 0                                   | 192 - 193       |
|          | SV/T-0-H      | 80 - 250<br>3" - 10" |                                                                                                      | -7.0 up to -50 /<br>-2.8 up to -20               | Х                                                              | Х                                        | 0                                     |                                                                         | 0                                   | 194 - 196       |
| 0 to 0   | V/KSM         | 50-200<br>2" - 8"    |                                                                                                      | -5.0 up to -100 /<br>-2.0 up to -40              | 0                                                              | 0                                        | 0                                     | 0                                                                       |                                     | 198 - 199       |

|                                               | Туре            | Size                             | pressure<br>positive<br>setting range<br>mbar /<br>inch W.C. | negative<br>setting range<br>mbar /<br>inch W.C. | Design<br>O = horizontal connection<br>X = vertical connection | O = soft sealing<br>X = metallic sealing | O = for non-standard operating parameters | O = for critical Medium<br>(Polymerisation, Corrosión, Cristallisation) | O = Heating jacket,<br>Heating coil | Page      |
|-----------------------------------------------|-----------------|----------------------------------|--------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|-----------|
| Pressure                                      | and Vacuum Re   | l<br><mark>lief Valves, v</mark> | l<br>veight pallet type                                      |                                                  |                                                                |                                          |                                           |                                                                         |                                     |           |
|                                               | PV/EL           | 50 - 80<br>2" - 3"               | +2.0 up to +210/<br>+0.8 up to +84                           | -3.5 up to -35 /<br>-1.4 up to -14               | 0                                                              | 0/X                                      |                                           |                                                                         | 0                                   | 200 - 202 |
|                                               | PV/ELR          | 80 - 100<br>3" - 4"              | +2.0 up to +210/<br>+0.8 up to +84                           | -3.5 up to -50 /<br>-1.4 up to -20               | 0                                                              | 0 / X                                    |                                           |                                                                         | 0                                   | 204 - 206 |
| L.v.                                          | VD/SV           | 40 - 300<br>1½" - 12"            | +2.0 up to +60 /<br>+0.8 up to +24                           | -2.0 up to -60 /<br>-0.8 up to -24               | Х                                                              | 0/X                                      |                                           |                                                                         | 0                                   | 208 - 210 |
|                                               | VD/SV-<br>PA(L) | 50 - 300<br>2" - 12"             | +2.0 up to +60 /<br>+0.8 up to +24                           | -2.0 up to -60 /<br>-0.8 up to -24               | x                                                              | 0 / X                                    |                                           |                                                                         | 0                                   | 212 - 215 |
|                                               | VD/KSM          | 50 - 200<br>2" - 8"              | +5.0 up to +100 /<br>+2.0 up to +40                          | -5.0 up to -100 /<br>-2.0 up to -40              | X                                                              | 0                                        | 0                                         | 0                                                                       |                                     | 216 - 218 |
| <u>, , , , , , , , , , , , , , , , , , , </u> | VD/KSM-PA       | 50 - 200<br>2" - 8"              | +5.0 up to +100 /<br>+2.0 up to +40                          | -5.0 up to -100 /<br>-2.0 up to -40              | Х                                                              | 0                                        | 0                                         | 0                                                                       |                                     | 220 - 222 |
| Pressure                                      | and Vacuum Re   | lief Valves, p                   | pilot-operated                                               |                                                  |                                                                |                                          |                                           |                                                                         |                                     |           |
|                                               | PM/(D)S         | 80 - 300<br>3" - 12"             | +10 up to +300 /<br>+4.0 up to +120                          | -3.0 up to -7 /<br>-1.2 up to -2.8               | X                                                              | Х                                        | 0                                         |                                                                         |                                     | 224 - 226 |
|                                               | PM-HF           | 80 - 300<br>3" - 12"             | +10 up to +1034 /<br>+4.0 up to +413.6                       | -2.2 up to -7 /<br>-0.88 up to -2.8              | x                                                              | Х                                        | 0                                         |                                                                         |                                     | 228 - 230 |
|                                               | PM/F            | replaced                         | replaced by PM-HF                                            |                                                  |                                                                |                                          |                                           |                                                                         |                                     |           |

#### **Pressure Relief Valve**



#### PROTEGO® P/EL



#### Pressure settings:

+3.5 mbar up to +210 mbar +1.4 inch W.C. up to +84 inch W.C. Higher pressure settings upon request.

#### **Function and Description**

The P/EL type PROTEGO® valve is a highly developed pressure relief valve. It is primarily used as a safety device for relieving pressure in tanks, containers and process engineering equipment. The valve protect against unallowable overpressure and prevents the unacceptable loss of product vapors close to the set pressure.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have al-

lowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure of the tank and still safely vent the required mass flow.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure, with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high quality stainless steel and with precisely lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used, and they enable the use of corrosive media. After the excess pressure is discharged, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to an explosion hazard
- · self-actuated condensate drain

#### **Design Types and Specifications**

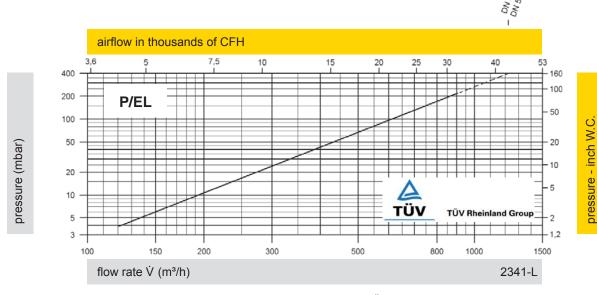
The valve pallet is weight-loaded. At set pressures greater than 80 mbar (32.1 inch W.C.), an elongated construction is used.

There are two different designs:

Pressure valve in basic design P/EL - -

Pressure valve with heating jacket P/EL - H

#### **Table 1: Dimensions** Dimensions in mm / inches To select the nominal size (DN), use the flow capacity chart on the following page 50 / 2" 50 / 2" 80 / 3" 80 / 3" ≤ +80 mbar ≤ +32.1 inch W.C. ≤ +80 mbar ≤ +32.1 inch W.C. > +80 mbar > +80 mbar Set pressure > +32.1 inch W.C. > +32.1 inch W.C. 218 / 8.58 218 / 8.58 218 / 8.58 218 / 8.58 а 287 / 11.30 452 / 17.80 289 / 11.38 454 / 17.87


Dimensions for pressure valves with heating jacket upon request

| Table 2: Material selection for housing |                 |                                    |                                |  |  |  |  |
|-----------------------------------------|-----------------|------------------------------------|--------------------------------|--|--|--|--|
| Design                                  | В               | С                                  |                                |  |  |  |  |
| Housing<br>Heating jacket (P/EL-H)      | Steel<br>Steel  | Stainless Steel<br>Stainless Steel |                                |  |  |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel                    | Special materials upon request |  |  |  |  |
| Weather hood                            | Steel           | Stainless Steel                    |                                |  |  |  |  |
| Protective mesh screen                  | Stainless Steel | Stainless Steel                    |                                |  |  |  |  |

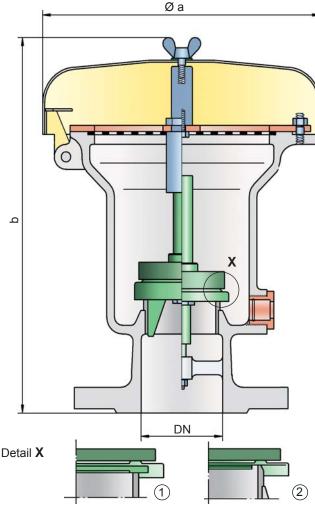
| Table 3: Material selection for pressure valve pallet |                                    |                 |                                    |                 |                                                   |  |  |  |
|-------------------------------------------------------|------------------------------------|-----------------|------------------------------------|-----------------|---------------------------------------------------|--|--|--|
| Design                                                | Α                                  | В               | С                                  | D               | - Special materials                               |  |  |  |
| Pressure range (mbar) (inch W.C.)                     | +3.5 up to +5.0<br>+1.4 up to +2.0 |                 | >+14 up to +210<br>>+5.6 up to +84 |                 | (Aluminum-coated, Titanium, Hastelloy) and higher |  |  |  |
| Valve pallet                                          | Aluminium                          | Stainless Steel | Stainless Steel                    | Stainless Steel | pressure settings upon                            |  |  |  |
| Sealing                                               | FEP                                | FEP             | Metal to Metal                     | PTFE            | request                                           |  |  |  |

| Table 4: Flange connection type |                              |
|---------------------------------|------------------------------|
| EN 1092-1; Form B1              | ath on the same was a supply |
| ASME B16.5; 150 lbs RFSF        | other types upon request     |

### **Flow Capacity Chart**



The flow capacity curve has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".


PROTEGO

for safety and environment

#### **Pressure Relief Valve**



#### PROTEGO® P/ELR



#### **Pressure settings:**

+3.5 mbar up to +210 mbar +1.4 inch W.C. up to +84 inch W.C.

Higher pressure settings upon request.

#### **Function and Description**

The P/ELR type PROTEGO® valve is a highly developed pressure relief valve with excellent flow performance. It is primarily used as a safety device for relieving pressure in tanks, containers, and process engineering equipment. The valve offers reliable protection against overpressure and prevents the unacceptable loss of product vapors close to the set pressure.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have al-

lowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure of the tank and still safely vent the required mass flow.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high quality stainless steel and with precisely lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · Can be used in areas subject to an explosion hazard
- · self-actuated condensate drain

#### **Design Types and Specifications**

The valve pallet is weight-loaded. At set pressures greater than 80 mbar (32.1 inch W.C.), an elongated construction is used.

There are two different designs:

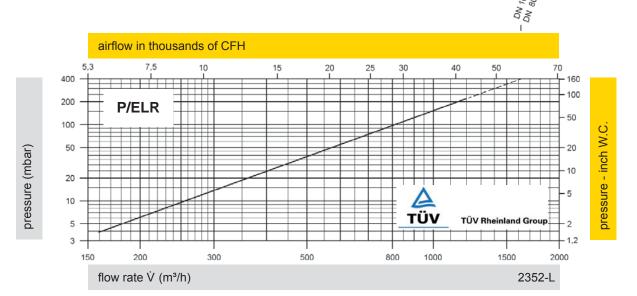
Pressure valve in basic design

P/ELR - -

Pressure valve with heating jacket

P/ELR - H

| Table 1: Dime   | Dimensions in mm / inches       |                                 |                                 |                                 |
|-----------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| To select the n |                                 |                                 |                                 |                                 |
| DN              | 80 / 3"                         | 80 / 3"                         | 100 / 4"                        | 100 / 4"                        |
| Set pressure    | ≤ +80 mbar<br>≤ +32.1 inch W.C. | > +80 mbar<br>> +32.1 inch W.C. | ≤ +80 mbar<br>≤ +32.1 inch W.C. | > +80 mbar<br>> +32.1 inch W.C. |
| а               | 353 / 13.90                     | 353 / 13.90                     | 353 / 13.90                     | 353 / 13.90                     |
| b               | 345 / 13.58                     | 505 / 19.88                     | 345 / 13.58                     | 505 / 19.88                     |


Dimensions for pressure valves with heating jacket upon request

| Table 2: Material selection for housing |                 |                                    |                                |  |  |  |  |
|-----------------------------------------|-----------------|------------------------------------|--------------------------------|--|--|--|--|
| Design                                  | В               | С                                  |                                |  |  |  |  |
| Housing<br>Heating jacket (P/ELR-H)     | Steel<br>Steel  | Stainless Steel<br>Stainless Steel |                                |  |  |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel                    | Special materials upon request |  |  |  |  |
| Weather hood                            | Steel           | Stainless Steel                    |                                |  |  |  |  |
| Protective mesh screen                  | Stainless Steel | Stainless Steel                    |                                |  |  |  |  |

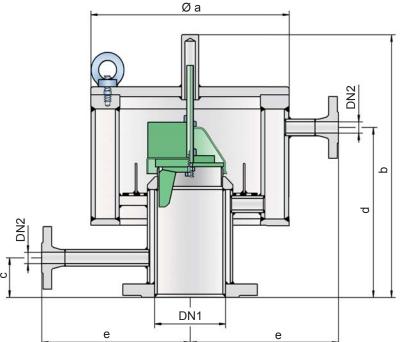
| Table 3: Material selection for pressure valve pallet |                                    |                 |                                    |                                    |                                                      |  |  |  |
|-------------------------------------------------------|------------------------------------|-----------------|------------------------------------|------------------------------------|------------------------------------------------------|--|--|--|
| Design                                                | Α                                  | В               | С                                  | D                                  |                                                      |  |  |  |
| Pressure range (mbar) (inch W.C.)                     | +3.5 up to +5.0<br>+1.4 up to +2.0 |                 | >+14 up to +210<br>>+5.6 up to +84 | >+14 up to +210<br>>+5.6 up to +84 | Special materials (Aluminum-coated, Titanium,        |  |  |  |
| Valve pallet                                          | Aluminium                          | Stainless steel | Stainless steel                    | Stainless steel                    | Hastelloy) and higher pressure settings upon request |  |  |  |
| Sealing                                               | FEP                                | FEP             | Metal to Metal                     | PTFE                               |                                                      |  |  |  |







The flow capacity chart has been determined with a calibrated and  $T\ddot{U}V$  certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".


PROTEGO for safety and environment



#### **Pressure Relief Valve**

in heat jacketed design

#### PROTEGO® SD/BS-H



#### **Pressure Settings:**

+5.0 mbar up to +210 mbar +2.0 inch W.C. up to +84 inch W.C. Higher pressure settings upon request.

#### **Function and Description**

The SD/BS-H type PROTEGO® valve is a highly developed pressure relief valve with a heating jacket down to the flange. It is primarily used as pressure relief device for vessels and process engineering equipment under difficult operating conditions. This includes extreme weather conditions or products that tend to form polymers at certain temperatures, adhere, or form deposits that negatively influence function (such as bitumen, tar, dust). The valve offers reliable protection against overpressure and prevents the unacceptable loss of product vapors close to the set pressure.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure of the tank and still safely vent the required mass flow.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure, with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high-grade stainless steel with precisely lapped valve pallets and a reinforced housing design. After the excess pressure is discharged, the valve reseats and provides a tight seal again.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- set pressure is close to the opening pressure which results in best possible pressure management of the system
- high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- can be used in areas subject to an explosion hazard
- heating jacketed design down to the flange to avoid cold bridges
- maximum permissible heating medium temperature of 320°C / 608°F (at 6 bar / 87 psi)
- a special design with a heatable valve cover is available
- at low pressure settings, an optimized valve pallet cover prevents the set pressure from being distorted by dust or condensate
- · reinforced housing design
- a special design with a mechanical vent pallet lift device is available

#### **Design Types and Specifications**

The valve pallet is weight-loaded. Starting at a set pressure of 30 mbar, a vane guide is also used.

Pressure valve in basic design with heating SD/BS - H jacket

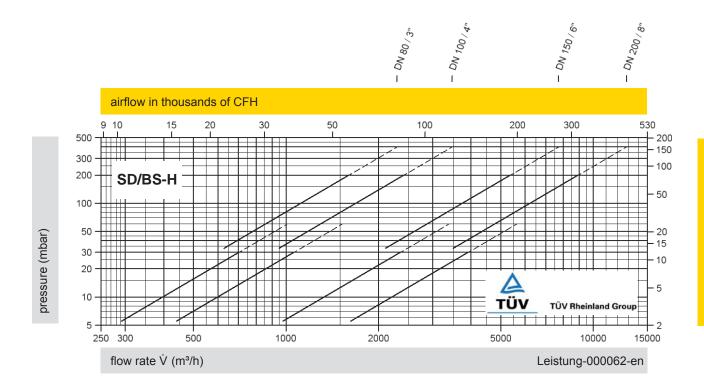
| _ | Todacot                                                                            |            |                 |                            |                            |           |                            |                            |             |
|---|------------------------------------------------------------------------------------|------------|-----------------|----------------------------|----------------------------|-----------|----------------------------|----------------------------|-------------|
|   | Table 1: [                                                                         | Dimension  | Dimensions in   | n mm / inches              |                            |           |                            |                            |             |
|   | To select the nominal size (DN), use the flow capacity chart on the following page |            |                 |                            |                            |           |                            |                            |             |
|   | DN1                                                                                | DN2        | а               | b                          | b                          | С         | d                          | d                          | е           |
|   |                                                                                    |            |                 | ≤ 30 mbar<br>≤12 inch W.C. | > 30 mbar<br>>12 inch W.C. |           | ≤ 30 mbar<br>≤12 inch W.C. | > 30 mbar<br>>12 inch W.C. |             |
|   | 80 / 3" *                                                                          | 15 / ½"    | 325 / 12.80     | 400 / 15.75                | 515 / 20.28                | 70 / 2.76 | 250 / 9.84                 | 390 / 15.35                | 250 / 9.84  |
|   | 100 / 4"                                                                           | 15 / ½"    | 325 / 12.80     | 400 / 15.75                | 505 / 19.88                | 60 / 2.36 | 250 / 9.84                 | 380 / 14.96                | 250 / 9.84  |
|   | 150 / 6"                                                                           | 15 / ½"    | 405 / 15.94     | 460 / 18.11                | 595 / 23.43                | 60 / 2.36 | 315 / 12.40                | 470 / 18.50                | 290 / 11.42 |
|   | 200 / 8"                                                                           | 15 / ½"    | 510 / 20.08     | 470 / 18.50                | 575 / 22.64                | 65 / 2.56 | 305 / 12.01                | 445 / 17.52                | 340 / 13.39 |
| * | also availa                                                                        | ble with s | pecial flange I | DN 50 / 2"                 |                            |           |                            |                            |             |

| Table 2: Material selection for housing |                 |                                    |                                |  |  |  |  |  |
|-----------------------------------------|-----------------|------------------------------------|--------------------------------|--|--|--|--|--|
| Design                                  | A               | В                                  |                                |  |  |  |  |  |
| Housing<br>Heating Jacket               | Steel<br>Steel  | Stainless Steel<br>Stainless Steel | Special materials upon request |  |  |  |  |  |
| Valve Seat                              | Stainless Steel | Stainless Steel                    |                                |  |  |  |  |  |

| Table 3: Materia | al selection for | pressure valve | nallet |
|------------------|------------------|----------------|--------|
| Table 3. Materia | ii Selection ioi | pressure varve | Danet  |

| Design                            | Α                            | В                               | С                                 |
|-----------------------------------|------------------------------|---------------------------------|-----------------------------------|
| Pressure range (mbar) (inch W.C.) | +5 up to +25<br>+2 up to +10 | >+10 up to +30<br>>+4 up to +12 | >+30 up to +210<br>>+12 up to +84 |
| Valve pallet                      | Aluminium                    | Stainless Steel                 | Stainless Steel                   |
| Valve pallet hood                 | Stainless Steel              | Stainless Steel                 | -                                 |
| Sealing                           | Metal to Metal               | Metal to Metal                  | Metal to Metal                    |

Special materials and higher pressure settings upon request


| Table 4: Flange connection | on t | vpe |
|----------------------------|------|-----|
|----------------------------|------|-----|

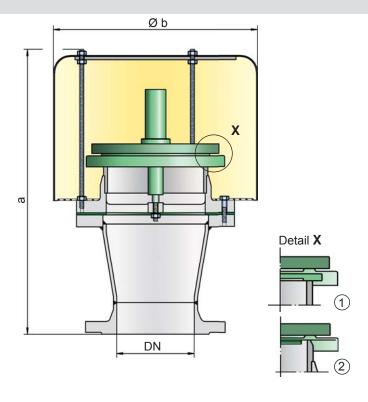
EN 1092-1; Form B1

ASME B16.5; 150 lbs RFSF

other types upon request

#### **Flow Capacity Chart**




The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".



for safety and environment



#### PROTEGO® D/SVL



#### Pressure settings:

+2.0 mbar up to +60 mbar +0.8 inch W.C. up to +24 inch W.C. Higher pressure settings upon request.

#### **Function and Description**

The D/SVL type PROTEGO® valve is a high performance pressure relief valve. It is primarily used as a safety device for relieving pressure in tanks, containers, and process engineering equipment. The valve offers reliable protection against overpressure and prevents the unacceptable loss of product vapors close to the set pressure.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has

the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure of the tank and still safely vent the required mass flow.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high quality stainless steel and with precisely lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallet from sticking when sticky products are used, and they enable the use of corrosive media. After the excess pressure is discharged, the valve reseats and provides a tight seal again.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

#### **Special Features and Advantages**

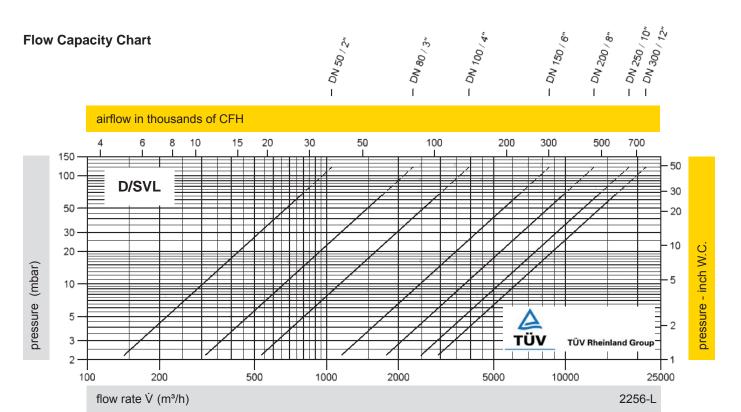
- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- · extremely high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to an explosion hazard

#### **Design Types and Specifications**

The valve pallet is weight-loaded. Higher pressures can be achieved upon request with a special spring-loaded design.

Pressure valve in basic design

D/SVL -

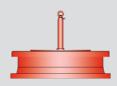

| Table 1:  | Dimensions                                                                         | Dimensions  | s in mm / inches |             |             |             |             |  |  |
|-----------|------------------------------------------------------------------------------------|-------------|------------------|-------------|-------------|-------------|-------------|--|--|
| To select | To select the nominal size (DN), use the flow capacity chart on the following page |             |                  |             |             |             |             |  |  |
| DN        | 50 / 2"                                                                            | 80 / 3"     | 100 / 4"         | 150 / 6"    | 200 / 8"    | 250 / 10"   | 300 / 12"   |  |  |
| а         | 336 / 13.23                                                                        | 412 / 16.22 | 444 / 17.48      | 564 / 22.20 | 664 / 26.20 | 687 / 27.05 | 687 / 27.05 |  |  |
| b         | 200 / 7.87                                                                         | 295 / 11.61 | 295 / 11.61      | 465 / 18.31 | 550 / 21.65 | 650 / 25.59 | 650 / 25.59 |  |  |

| Table 2: Material selection for ho | using           |                 |                                |
|------------------------------------|-----------------|-----------------|--------------------------------|
| Design                             | Α               | В               |                                |
| Housing                            | Steel           | Stainless Steel |                                |
| Valve seat                         | Stainless Steel | Stainless Steel | Special Materials upon request |
| Sealing                            | PTFE            | PTFE            |                                |
| Weather hood                       | Stainless Steel | Stainless Steel |                                |

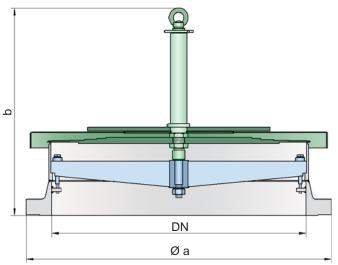
| Table 3:       | Table 3: Material selection for pressure valve pallet |           |                                     |                 |                 |                                   |                                  |  |  |
|----------------|-------------------------------------------------------|-----------|-------------------------------------|-----------------|-----------------|-----------------------------------|----------------------------------|--|--|
| Design         |                                                       | Α         | В                                   | С               | D               | E                                 | F                                |  |  |
| Pressure range | e (mbar)<br>(inch W.C.)                               |           | >+3.5 up to +14<br>>+1.4 up to +5.6 |                 |                 | >+14 up to +35<br>>+5.6 up to +14 | >+35 up to +60<br>>+14 up to +24 |  |  |
| Valve          |                                                       | Aluminium | Stainless steel                     | Stainless steel | Stainless steel | Stainless steel                   | Stainless steel                  |  |  |
| Sealing        |                                                       | FEP       | FEP                                 | Metal to Metal  | Metal to Metal  | PTFE                              | PTFE                             |  |  |

Special Materials and higher pressure settings upon request






The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".




for safety and environment

#### **Emergency pressure relief valve**



## PROTEGO® ER-V-LP



#### **Pressure Settings:**

+3.4 mbar up to +15 mbar +1.4 inch W.C. up to +6 inch W.C.

For higher pressure settings, see types ER/V, ER/VH and ER/V-F.

#### **Function and Description**

The PROTEGO® Type ER-V-LP valve is a sophisticated pressure relief valve for applications in which a high flow efficiency is of the essence. It is primarily used as an emergency pressure relief valve on storage tanks, vessels, silos, and process engineering equipment; it offers reliable protection against excessive overpressure and prevents excessive product loss at pressures as high as close to the set-to-operate pressure. It is designed to relieve particularly large quantities to prevent the vessel rupturing in an emergency case.

The valve will start to open as soon as the set-to-operate pressure is reached and only requires a 10% pressure increase or opening pressure differential until full lift. Dedicated R & D investments have enabled PROTEGO® to develop a new *valve pallet technology* for which a patent has been granted. This patented *valve pallet technology* allows the area characteristic typical of safety valves to be also applied to lower-pressure applications, while ensuring that minimum leakage-rate requirements are met.

Adopting this new patented *valve pallet technology* permits the valve to be set to just 10% below the maximum allowable working pressure of the tank and still vent the required mass flow.

Due to the sophisticated manufacturing technology, the tank pressure is maintained up to the set-to-operate pressure, with seal-tight requirements far above common standards being met. Once the excess pressure is relieved, the valve reseats and seals tight again.

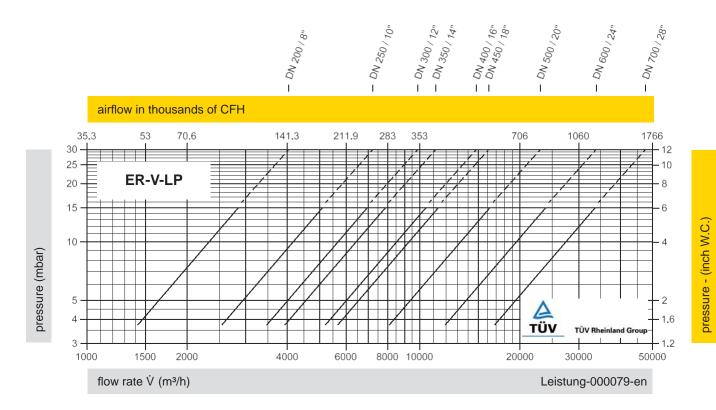
#### **Special Features and Advantages**

- patented valve pallet technology guarantees that minimum leakage-rate requirements can be met and, hence, least possible product losses and reduced impact on the environment are ensured
- 10% Technology for minimum pressure increase until full lift
- set-to-operate pressure close to the opening pressure; hence, best possible pressure management of the system
- high flow efficiency
- valve pallet is guided within a closed system and, thus, protected from atmospheric influence
- · suited for use in hazardous areas
- rugged body design
- · movable components are secured
- best technology for API tanks

#### **Design Types and Specifications**

The valve pallet is weight-loaded. Higher set-to-operate pressures are achieved with Types ER/V and ER/VH (lever-operated) valves or Type ER/V-F (spring-loaded) valves.

Pressure valve in basic design

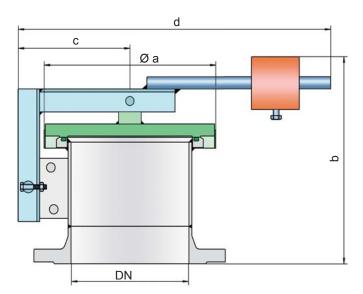

**ER-V-LP** 

| Ta | Table 1: Dimensions   Dimensions in mm / inch                                      |             |             |             |             |             |             |             | mm / inches |             |
|----|------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| To | To select the nominal size (DN), use the flow capacity chart on the following page |             |             |             |             |             |             |             |             |             |
| [  | DN                                                                                 | 200 / 8"    | 250 / 10"   | 300 / 12"   | 350 / 14"   | 400 / 16"   | 450 / 18"   | 500 / 20"   | 600 / 24"   | 700 / 28"   |
|    | а                                                                                  | 343 / 13.50 | 406 / 15.98 | 483 / 19.02 | 533 / 20.98 | 597 / 23.50 | 635 / 25.00 | 699 / 27.52 | 813 / 32.01 | 837 / 32.95 |
|    | b                                                                                  | 378 / 14.88 | 399 / 15.71 | 409 / 16.10 | 440 / 17.32 | 455 / 17.91 | 464 / 18.27 | 481 / 18.94 | 556 / 21.89 | 571 / 22.48 |

| Table 2: Material | selection       |                 |                               |
|-------------------|-----------------|-----------------|-------------------------------|
| Design            | Α               | В               |                               |
| Housing           | Steel           | Stainless Steel |                               |
| Valve seat        | Stainless Steel | Stainless Steel | Special Materials upon reqest |
| Valve pallet      | Stainless Steel | Stainless Steel |                               |
| Sealing           | Stainless Steel | Stainless Steel |                               |

| Ta | able 3: Flange connection type |                          |
|----|--------------------------------|--------------------------|
| E١ | N 1092-1; Form B1              | other types upon request |
| AS | SME B16.5; 150 lbs RFSF        | other types upon request |

### **Flow Capacity Chart**




The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".



for safety and environment

PROTEGO® ER/VH



#### Pressure settings:

DN 200 to DN 350: >+40 mbar up to +60 mbar

>+16 inch W.C. up to +24 inch W.C.

DN 400 to DN 700: >+25 mbar up to +60 mbar

>+10 inch W.C. up to +24 inch W.C.

Higher and lower pressure settings, upon request.

#### **Function and Description**

The ER/VH type PROTEGO® valve is a highly developed emergency pressure relief valve with high flow capacity. It is primarily used as a safety device for emergency pressure relief for storage tanks, containers, silos, and process engineering equipment; it offers reliable protection against overpressure and prevents impermissible product vapor loss close to the set pressure. It is designed to discharge particularly large amounts to prevent the vessel from rupturing in an emergency case. Higher set pressures are achieved by a lever with lockable weight loading. The position of the weight is factory-marked. Starting at DN 500, the devices can also be used as manhole covers.

When the set pressure is reached, the valve starts to open and is fully open within 10% overpressure. This unique 10% "full lift type technology" enables a pressure setting that is only 10% below the maximum allowable working pressure or design pres-

sure of the tank. Even in the low pressure range the vent has the opening characteristic comparable to a typical high pressure safety relief valve. The full lift type pallets are a result of many years of development. The valve pallet is mounted on one side.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of stainless steel with an inserted O-ring seal, a precisely lapped valve pallet, as well as a reinforced housing design. After the excess pressure is discharged, the valve reseats and provides a tight seal again.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- excellent tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- high flow capacity
- · can be used in areas subject to explosion hazards
- · reinforced housing design
- · safely secured housing cover
- · best technology for API-tanks

#### **Design Types and Specifications**

The valve pallet is weight-loaded. Lower pressures are generally achieved without a lever design (see ER-V-LP, ER/V), and higher pressures are realized with spring-loading (see ER/V-F).

Pressure valve in basic design

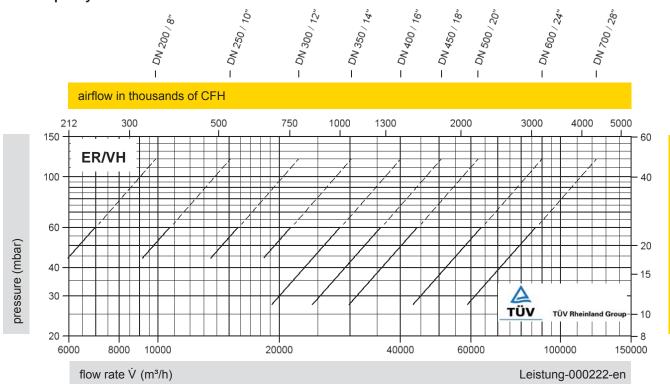
ER/VH

| Ö           |
|-------------|
| $\geq$      |
| =           |
| 늉           |
| $\subseteq$ |
| 7           |
| (D)         |
| =           |
| ร           |
| S           |
| 9           |
| d           |
|             |

| Tabl | Table 1: Dimensions   Dimensions in mm / inches |                |                 |               |                  |            |           |           |           |
|------|-------------------------------------------------|----------------|-----------------|---------------|------------------|------------|-----------|-----------|-----------|
| To s | elect the nom                                   | ninal size (DN | ), use the flov | v capacity ch | art on the follo | owing page |           |           |           |
| DN   | 200 / 8"                                        | 250 / 10"      | 300 / 12"       | 350 / 14"     | 400 / 16"        | 450 / 18"  | 500 / 20" | 600 / 24" | 700 / 28" |
| а    | 305 /                                           | 375 /          | 425 /           | 445 /         | 495 /            | 545 /      | 615 /     | 715 /     | 795 /     |
|      | 12.01                                           | 14.76          | 16.73           | 17.52         | 19.49            | 21.46      | 24.21     | 28.15     | 31.30     |
| b    | 350 /                                           | 365 /          | 385 /           | 390 /         | 390 /            | 415 /      | 420 /     | 450 /     | 465 /     |
|      | 13.78                                           | 14.37          | 15.16           | 15.35         | 15.35            | 16.34      | 16.53     | 17.72     | 18.31     |
| С    | 200 /                                           | 240 /          | 265 /           | 285 /         | 310 /            | 330 /      | 360 /     | 410 /     | 450 /     |
|      | 7.87                                            | 9.45           | 10.43           | 11.22         | 12.20            | 12.99      | 14.17     | 16.14     | 17.72     |
| d    | 590 /                                           | 735 /          | 780 /           | 845 /         | 890 /            | 1070 /     | 1090 /    | 1140 /    | 1380 /    |
|      | 23.23                                           | 28.94          | 30.71           | 33.27         | 35.04            | 42.13      | 42.91     | 44.88     | 54.33     |

| Table 2: Material selection |                                             |                 |  |  |  |  |  |  |
|-----------------------------|---------------------------------------------|-----------------|--|--|--|--|--|--|
| Design                      | A                                           | В               |  |  |  |  |  |  |
| Housing                     | Steel                                       | Stainless Steel |  |  |  |  |  |  |
| Valve seat                  | Stainless Steel                             | Stainless Steel |  |  |  |  |  |  |
| Valve pallet                | Stainless Steel or<br>Steel-Stainless Steel | Stainless Steel |  |  |  |  |  |  |
| Sealing                     | FPM                                         | FPM             |  |  |  |  |  |  |
| Weight                      | Steel                                       | Stainless Steel |  |  |  |  |  |  |

Table 3: Flange connection type


EN 1092-1; Form B1

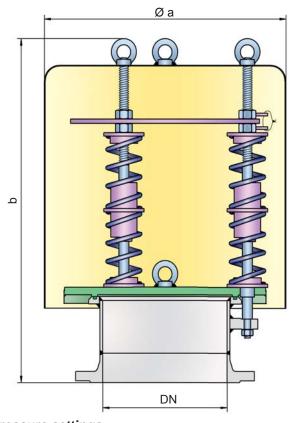
ASME B16.5; 150 lbs RFSF

other types upon request

Special materials upon request

#### **Flow Capacity Chart**




The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

PROTEGO

for safety and environment



#### PROTEGO® ER/V-F



#### Pressure settings:

>+60 mbar up to +500 mbar >+24 inch W.C. up to +200 inch W.C. Higher pressure settings, upon request.

Lower pressure settings, see types ER-V-LP, ER/V and ER/VH.

#### **Function and Description**

The ER/V-F type PROTEGO® valve is a highly developed emergency pressure relief valve with high flow capacity. It is primarily used as a safety device for emergency pressure relief for storage tanks, containers, silos, and process engineering equipment; it offers reliable protection against overpressure and prevents impermissible product vapor loss close to the set pressure. It is designed to discharge particularly large amounts to prevent the vessel from rupturing in a emergency case. The spring-loading allows for higher set pressures than those with the ER-V-LP, ER/V or ER/VH.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure of the tank and still safely vent the required mass flow.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high-grade steel with an inserted O-ring seal, a precisely lapped valve pallet, as well as a reinforced housing design. After the excess pressure is relieved, the valve reseats and provides a tight seal again.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- excellent tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to explosion hazards
- · reinforced housing design
- · spring-loading for high set pressures
- · best technology for API-tanks

#### **Design Types and Specifications**

The valve pallet is spring-loaded. Lower pressures are achieved with the ER-V-LP, ER/V and ER/VH designs.

Pressure valve in basic design

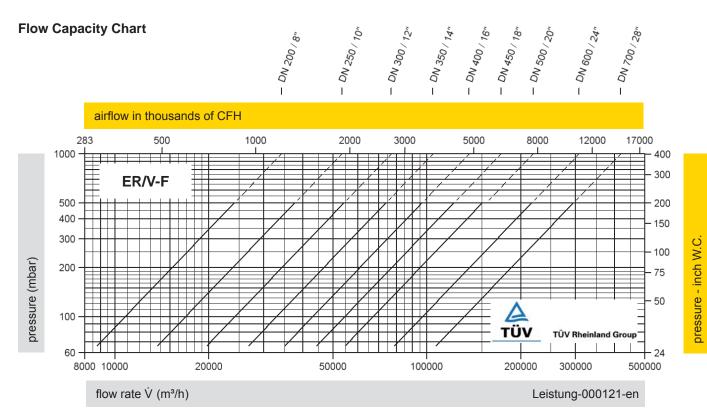
ER/V-F

| To s | To select the nominal size (DN), use the flow capacity chart on the following page |             |             |                                              |             |             |              |                                             |              |
|------|------------------------------------------------------------------------------------|-------------|-------------|----------------------------------------------|-------------|-------------|--------------|---------------------------------------------|--------------|
| DN   | 200 / 8"                                                                           | 250 / 10"   | 300 / 12"   | 350 / 14"                                    | 400 / 16"   | 450 / 18"   | 500 / 20"    | 600 / 24"                                   | 700 / 28"    |
| а    | 465 / 18.31                                                                        | 550 / 21.65 | 650 / 25.59 | 650 / 25.59                                  | 800 / 31.50 | 800 / 31.50 | 1000 / 39.37 | 1000 / 39.37                                | 1200 / 47.24 |
| b    | 860 / 33.86<br>(≤370 mbar<br>≤148 inchW.C.)                                        | (≤240 mbar  | (≤240 mbar  | 1170 / 46.06<br>(≤270 mbar<br>≤108 inchW.C.) | (≤220 mbar  | (≤170 mbar  | (≤130 mbar   | (≤140 mbar                                  | (≤140 mbar   |
| b    | 980 / 38.58<br>(>370 mbar<br>>148 inchW.C.)                                        | (>240 mbar  | (>240 mbar  | 1490 / 58.66<br>(>270 mbar<br>≤108 inchW.C.) | (>220 mbar  | (>170 mbar  | (>130 mbar   | 1655 / 65.16<br>(>140 mbar<br>>56 inchW.C.) | (>140 mbar   |
|      |                                                                                    |             |             |                                              |             |             |              |                                             |              |
| Tah  | Table 2: Material selection                                                        |             |             |                                              |             |             |              |                                             |              |

| Table 2: Material selection |                                             |                 |  |  |  |  |  |
|-----------------------------|---------------------------------------------|-----------------|--|--|--|--|--|
| Design                      | A                                           | В               |  |  |  |  |  |
| Housing                     | Steel                                       | Stainless Steel |  |  |  |  |  |
| Valve seat                  | Stainless Steel                             | Stainless Steel |  |  |  |  |  |
| Valve pallet                | Stainless Steel or<br>Steel-Stainless Steel | Stainless Steel |  |  |  |  |  |
| Sealing                     | FPM                                         | FPM             |  |  |  |  |  |
| Pressure spring             | Stainless Steel                             | Stainless Steel |  |  |  |  |  |
| Weather hood                | Steel                                       | Stainless Steel |  |  |  |  |  |

Table 3: Flange connection type

EN 1092-1; Form B1


ASME B16.5; 150 lbs RFSF

other types upon request

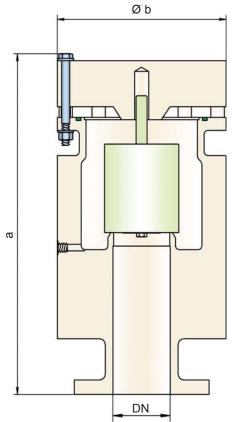
Dimensions in mm / inches

Special materials upon request

Table 1: Dimensions



The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".




for safety and environment



# Pressure Relief Valve made of plastic

#### PROTEGO® D/KSM



#### Pressure settings:

+6.0 mbar up to +100 mbar (DN 50/2")

+2.4 inch W.C. up to +40 inch W.C.

+4.0 mbar up to +100 mbar (DN 80/3")

+1.6 inch W.C. up to +40 inch W.C.

+4.5 mbar up to +100 mbar (DN 100/4" - DN 200/8")

+1.8 inch W.C. up to +40 inch W.C.

Higher pressure settings upon request.

#### **Function and Description**

The PROTEGO® valve D/KSM is a state-of-the-art pressure relief valve with excellent flow performance made out of highgrade synthetic material. It is primarily used as a safety fitting for relieving pressure in tanks, containers, and process engineering equipment. The valve prevents emission losses almost up to the set pressure. The valve is a perfect solution for corrosive, polymerizing or sticky media.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Con-

tinuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure (MAWP) of the tank and still safely vent the required mass flow.

Due to our highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a tightness that is far superior to the conventional standard. This feature is facilitated by special valve seats made of high quality synthetic material or PTFE. After the excess pressure is discharged, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · corrosion resistant valve
- · perfect solution for corrosive, polymerizing and sticky media
- · weight reduction in comparsion to steel/stainless steel
- · smooth surface
- · condensate drain
- · different plastics can be combined
- · maintenance friendly design

#### **Design Types and Specifications**

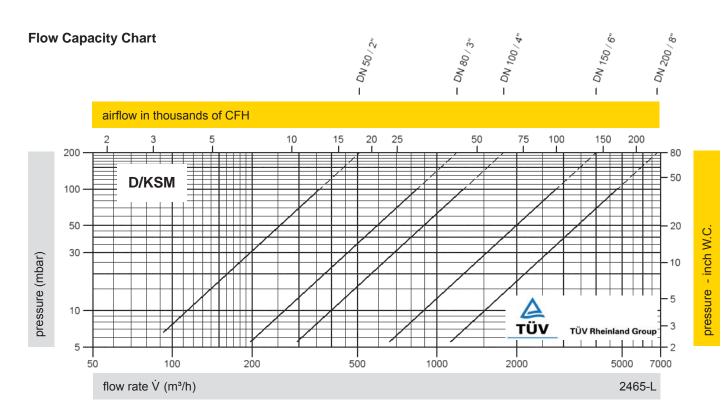
The valve pallet is weight-loaded, and the highest pressure levels are only attained with metal disks.

Pressure valve in basic design

D/KSM-

| Table 1: Dime                                                                       | Table 1: Dimensions   Dimensions in mm / inches |             |                |                |                |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------|-------------|----------------|----------------|----------------|--|--|
| To select the nominal size (DN) use the flow capacity charts on the following pages |                                                 |             |                |                |                |  |  |
| DN                                                                                  | 50 / 2"                                         | 80 / 3"     | 100 / 4"       | 150 / 6"       | 200 / 8"       |  |  |
| а                                                                                   | 376 / 14.80                                     | 521 / 20.51 | 563 / 22.17    | 687 / 27.05    | 952 / 37.48    |  |  |
| a                                                                                   | 3707 14.00                                      |             | (543 / 21.38)* | (681 / 26.81)* |                |  |  |
| b                                                                                   | 190 / 7 00                                      | 250 / 9.84  | 300 / 11.81    | 350 / 13.78    | 560 / 22.05    |  |  |
| Ь                                                                                   | b 180 / 7.09                                    | 250 / 9.84  | 300 / 11.01    | (405 / 15.94)* | (500 / 19.68)* |  |  |

<sup>\*</sup> Dimensions in brackets only for PVDF


| Tabelle 2: Material selection for housing |         |         |      |  |  |  |
|-------------------------------------------|---------|---------|------|--|--|--|
| Design                                    | Α       | В       | С    |  |  |  |
| Housing                                   | PE      | PP      | PVDF |  |  |  |
| Valve seats                               | PE      | PP      | PVDF |  |  |  |
| Sealing                                   | FPM     | FPM     | FPM  |  |  |  |
| Valve pallet                              | A, C, D | B, C, D | C, D |  |  |  |

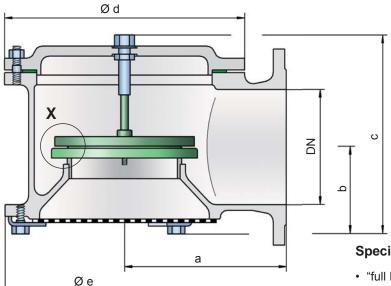
Special materials upon request

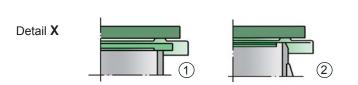
| Table 3: Material selection for pressure valve pallet |                                   |                                   |                                  |                                 |  |  |  |
|-------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|--|--|--|
| Design                                                | A                                 | В                                 | С                                | D                               |  |  |  |
| Pressure range (mbar) (inch W.C.)                     | +6.0 up to +16<br>+2.4 up to +6.4 | +5.5 up to +16<br>+2.2 up to +6.4 | +9.5 up to +30<br>+3.8 up to +12 | +30 up to +100<br>+12 up to +40 |  |  |  |
| Valve pallet                                          | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Sealing                                               | PTFE                              | PTFE                              | PTFE                             | PTFE                            |  |  |  |
| Spindle guide                                         | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Weights                                               | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |

Special materials and other pressure settings are available upon request






The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".


PROTEGO

for safety and environment



#### PROTEGO® SV/E-1-0





#### Vacuum settings:

-2.0 mbar up to -60 mbar -0.8 inch W.C. up to -24 inch W.C. Higher vacuum settings upon request.

#### **Function and Description**

The SV/E-1-0 type PROTEGO® valve is a highly developed vacuum relief valve with excellent flow performance. It is primarily used as a safety device for relieving vacuum in tanks, containers and process engineering equipment. The valve offers reliable protection against vacuum, and prevents inbreathing of air close to the set pressure.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set

just 10% below the maximum allowable working pressure of the tank and still safely vent the required mass flow.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure, with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high quality stainless steel and with precisely lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used, and they enable the use of corrosive media. After the vacuum is relieved, the valve reseats and provides a tight seal again.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to an explosion hazard
- · self-actuated condensate drain
- · best technology for API-tanks

#### **Design Types and Specifications**

The valve pallet is weight-loaded. Higher vacuum can be achieved upon request with a special spring-loaded design.

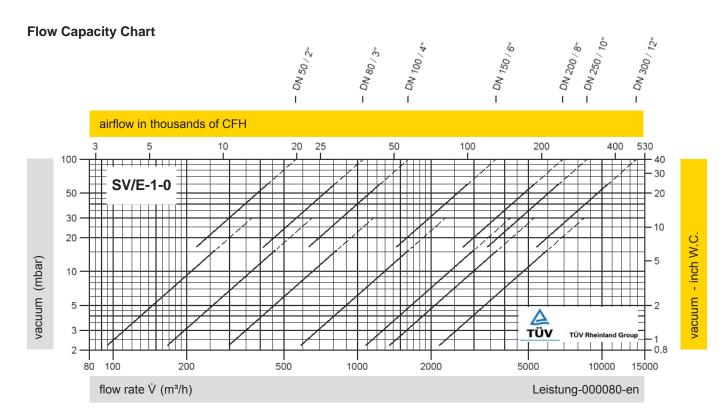
There are two different designs:

Vacuum valve in basic design SV/E-1-0 -

Vacuum valve with heating jacket SV/E-1-0 - H

Additional special devices available upon request.

| Table 1: | Table 1: Dimensions   Dimensions in mm / inches                                   |            |             |             |             |             |             |  |  |  |
|----------|-----------------------------------------------------------------------------------|------------|-------------|-------------|-------------|-------------|-------------|--|--|--|
| To selec | To select the nominal size (DN) use the flow capacity chart on the following page |            |             |             |             |             |             |  |  |  |
| DN       | 50 / 2"                                                                           | 80 / 3"    | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"   | 300 / 12"   |  |  |  |
| а        | 140 / 5.51                                                                        | 170 / 6.69 | 190 / 7.48  | 230 / 9.06  | 300 / 11.81 | 325 / 12.80 | 425 / 16.73 |  |  |  |
| b        | 75 / 2.95                                                                         | 85 / 3.35  | 95 / 3.74   | 120 / 4.72  | 140 / 5.51  | 165 / 6.50  | 205 / 8.07  |  |  |  |
| С        | 205 / 8.07                                                                        | 205 / 8.07 | 285 / 11.22 | 360 / 14.17 | 405 / 15.94 | 460 / 18.11 | 500 / 19.69 |  |  |  |
| d        | 170 / 6.69                                                                        | 235 / 9.25 | 280 / 11.02 | 335 /13.19  | 445 / 17.52 | 505 / 19.88 | 505 / 19.88 |  |  |  |
| е        | 215 / 8.46                                                                        | 215 / 8.46 | 255 / 10.04 | 335 / 13.19 | 425 / 16.73 | 460 / 18.11 | 625 / 24.61 |  |  |  |


Dimensions for vacuum relief valve with heating jacket upon request

| Table 2: Material selection for housing |                 |                                    |                 |                                                      |  |  |  |
|-----------------------------------------|-----------------|------------------------------------|-----------------|------------------------------------------------------|--|--|--|
| Design                                  | В               | С                                  | D               |                                                      |  |  |  |
| Housing<br>Heating jacket (SV/E-1-0-H)  | Steel<br>Steel  | Stainless Steel<br>Stainless Steel | Aluminium<br>–  | The housings is also available with an ECTFE-Coating |  |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel                    | Stainless Steel | Special materials upon request                       |  |  |  |
| Sealing                                 | PTFE            | PTFE                               | PTFE            |                                                      |  |  |  |

| Table 3: Material selection for vacuum valve pallet |                                    |                                    |                                   |                                  |                                   |                                  |  |
|-----------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|--|
| Design                                              | Α                                  | В                                  | С                                 | D                                | E                                 | F                                |  |
| vacuum range (mbar)<br>(inch W.C.)                  | -2.0 up to -3.5<br>-0.8 up to -1.4 | <-3.5 up to -14<br><-1.4 up to 5.6 | <-14 up to -35<br><-5.6 up to -14 | <-35 up to -60<br><-14 up to -24 | <-14 up to -35<br><-5.6 up to -14 | <-35 up to -60<br><-14 up to -24 |  |
| Valve pallet                                        | Aluminium                          | Stainless Steel                    | Stainless Steel                   | Stainless Steel                  | Stainless Steel                   | Stainless Steel                  |  |
| Sealing                                             | FEP                                | FEP                                | Metal to Metal                    | Metal to Metal                   | PTFE                              | PTFE                             |  |

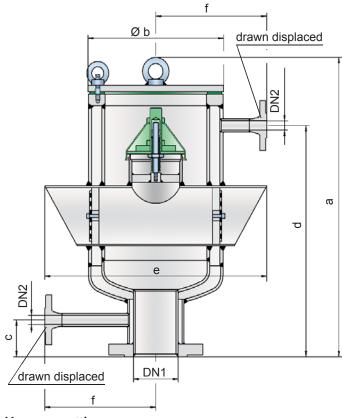
Special materials (Alu-coated, Titanium, Hastelloy) and higher vacuum settings are available upon request

| Table 4: Flange connection type |                          |
|---------------------------------|--------------------------|
| EN 1092-1; Form B1              | other types upon request |
| ASME B16.5; 150 lbs RFSF        | other types upon request |



The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

PROTEGO


for safety and environment



# Vacuum Relief Valve

#### in a special heat jacketed design

#### PROTEGO® SV/T-0-H



#### Vacuum settings:

-7 mbar up to -50 mbar

-2.8 inch W.C. up to -20 inch W.C.

Higher and lower vacuum settings upon request.

#### **Function and Description**

The SV/T-0-H type PROTEGO® valve is a highly developed vacuum relief valve with a valve housing that comes with a heating jacket down to the flange. It is primarily used as a safety device for inbreathing to tanks, containers, and process engineering equipment under difficult operating conditions. This includes extreme weather conditions or products that tend to form polymers at certain temperatures, adhere, or form deposits that negatively influence function (such as bitumen, tar, dust). The valve offers reliable protection against vacuum and prevents the intake of air close to the set vacuum.

When the set vacuum is reached, the valve starts to open and reaches full lift within a 40% vacuum increase. Up to the set vacuum, the tank vacuum is maintained with a seal that is far superior to the conventional standard due to the highly developed manufacturing technology. This feature is achieved by valve seats made of high quality stainless steel with precisely lapped valve pallets and a reinforced housing design. After the vacuum is relieved, the valve reseats and again provides a tight seal.

#### **Special Features and Advantages**

- excellent tightness and hence least possible product losses and reduced environmental pollution
- · high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · can be used in areas subject to an explosion hazard
- complete heat jacketed design down to the flange to avoid cold bridges
- maximum permissible heating medium temperature of 320°C / 608°F (at 6 bar / 87 psi)
- · a special design that preheats incoming air is also available
- a special design with a heatable valve cover is also available
- the valve pallet cover prevents the set pressure from being distorted by dust or condensate
- · reinforced housing design
- a special design with a mechanical vent pallet lift device is available

#### **Design Types and Specifications**

The valve pallet is weight-loaded.

Vacuum valve in basic design with heating sv/T - 0 - H jacket

| Table 1: Dime                                                                | Table 1: DimensionsDimensions in mm / inches |             |             |             |              |  |  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------|-------------|-------------|-------------|--------------|--|--|--|--|
| To select the nominal size (DN) use the capacity chart on the following page |                                              |             |             |             |              |  |  |  |  |
| DN1                                                                          | 80 / 3" *                                    | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"    |  |  |  |  |
| DN2                                                                          | 15 / ½"                                      | 15 / ½"     | 15 / ½"     | 15 / ½"     | 15 / ½"      |  |  |  |  |
| а                                                                            | 570 / 22.44                                  | 570 / 22.44 | 720 / 28.35 | 920 / 36.22 | 1050 / 41.34 |  |  |  |  |
| b                                                                            | 275 / 10.83                                  | 275 / 10.83 | 355 / 13.98 | 405 / 15.94 | 508 / 20.00  |  |  |  |  |
| С                                                                            | 70 / 2.76                                    | 70 / 2.76   | 60 / 2.36   | 70 / 2.76   | 70 / 2.76    |  |  |  |  |
| d                                                                            | 440 / 17.32                                  | 440 / 17.32 | 590 / 23.23 | 790 / 31.10 | 920 / 36.22  |  |  |  |  |
| е                                                                            | 450 / 17.72                                  | 450 / 17.72 | 650 / 25.59 | 750 / 29.53 | 950 / 37.40  |  |  |  |  |
| f                                                                            | 225 / 8.86                                   | 225 / 8.86  | 260 / 10.24 | 300 / 11.91 | 350 / 13.78  |  |  |  |  |

<sup>\*</sup> also available with special flange DN 50 / 2"

| Table 2: Material selection for housing |                 |                                    |                                |  |  |  |
|-----------------------------------------|-----------------|------------------------------------|--------------------------------|--|--|--|
| Design                                  | Α               | В                                  |                                |  |  |  |
| Housing<br>Heating jacket               | Steel<br>Steel  | Stainless Steel<br>Stainless Steel | Special materials upon request |  |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel                    |                                |  |  |  |
| Sealing                                 | PTFE            | PTFE                               |                                |  |  |  |

| Table 3: Material selection for vacuum valve pallet |                                  |                                 |                                |                                             |  |  |  |
|-----------------------------------------------------|----------------------------------|---------------------------------|--------------------------------|---------------------------------------------|--|--|--|
| Design                                              | Α                                | В                               | С                              |                                             |  |  |  |
| Vacuum range (mbar)<br>(inch W.C.)                  | -7.0 up to -25<br>-2.8 up to -10 | -10 up to -30<br>-4.0 up to -12 | -30 up to -50<br>-12 up to -20 | Special materials and other vacuum settings |  |  |  |
| Valve pallet                                        | Aluminium                        | Stainless Steel                 | Stainless Steel                | are available upon request                  |  |  |  |
| Valve pallet hood                                   | Stainless Steel                  | Stainless Steel                 | Stainless Steel                |                                             |  |  |  |
| Sealing                                             | Metal to Metal                   | Metal to Metal                  | Metal to Metal                 |                                             |  |  |  |

| Table 4: Flange connection type |                          |  |  |  |
|---------------------------------|--------------------------|--|--|--|
| EN 1092-1; Form B1              | other types upon request |  |  |  |
| ASME B16.5; 150 lbs RFSF        | other types upon request |  |  |  |





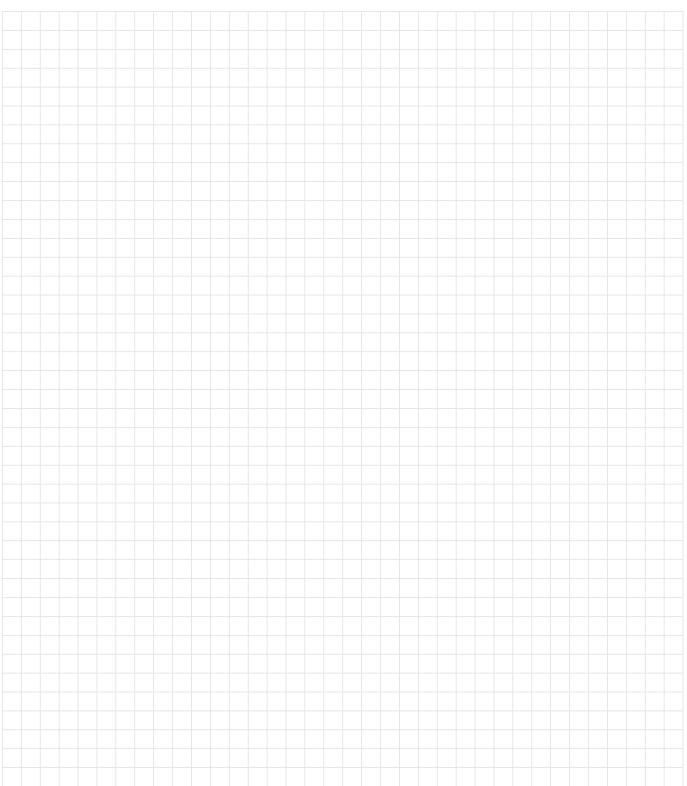
# Vacuum Relief Valve Flow Capacity Chart

#### PROTEGO® SV/T-0-H



#### Remark

set pressure = 
$$\frac{\text{opening pressure resp. tank design pressure}}{1.4}$$

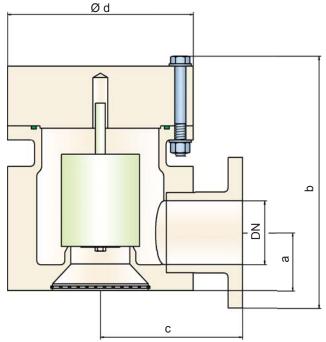

Set pressure = the valve starts to open

**Opening pressure** = set pressure plus overpressure

**Overpressure** = pressure increase over the set pressure

The flow capacity chart has been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

## Notes:








# Vacuum Relief Valve made of plastic

#### PROTEGO® V/KSM



#### Vacuum settings:

-6.0 mbar up to -100 mbar (DN 50/2")

-2.4 inch W.C. up to -40 inch W.C.

-4.0 mbar up to -100 mbar (DN 80/3")

-1.6 inch W.C. up to -40 inch W.C.

-4.5 mbar up to -100 mbar (DN 100/4" - DN 200/8")

-1.8 inch W.C. up to -40 inch W.C.

Higher pressure settings upon request.

#### **Function and Description**

The PROTEGO® valve V/KSM is a state-of-the-art vacuum relief valve with excellent flow performance made of highgrade synthetic material. It is used as a safety device to relieve vacuum in tanks, containers, and process engineering equipment; it prevents the inbreathing of air until reaching the set vacuum. The valve is a perfect solution for corrosive, polymerizing or sticky media.

The device will start to open as soon as the set vacuum is reached and is fully open within 10% vacuum increase. Continuous investments into research and development have

allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working vacuum (MAWV) of the tank and still safely vent the required mass flow.

Due to our highly developed manufacturing technology, the tank pressure is maintained up to the set vacuum, with a seal that is far superior to the conventional standard. This feature is achieved by valve seats made of high-performance plastics and a high grade PTFE seal. After the vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · corrosion resistant valve
- · perfect solution for corrosive, polymerizing and sticky media
- · weight reduction in comparsion to steel/stainless steel
- · smooth surface
- · automatic condensate drain
- · different plastics can be combined
- · maintenance friendly design

#### **Design Types and Specifications**

The valve pallet is weight-loaded, and the highest pressure levels are only attained with metal discs.

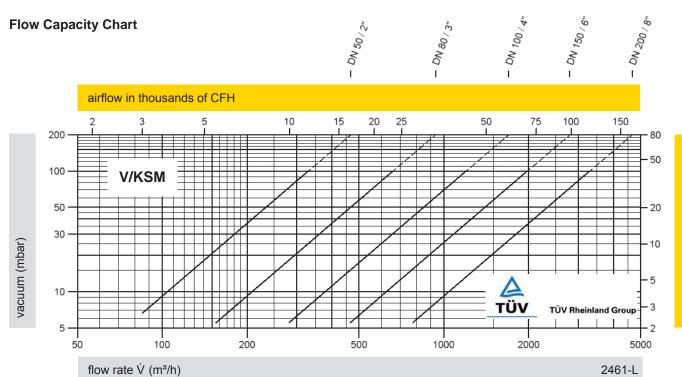
Vacuum valve in basic design

V/KSM-

| Table 1: Dime                                                                      | Table 1: Dimensions   Dimensions in mm / inches |             |                |                |                |  |  |  |
|------------------------------------------------------------------------------------|-------------------------------------------------|-------------|----------------|----------------|----------------|--|--|--|
| To select the nominal size (DN), use the flow capacity chart on the following page |                                                 |             |                |                |                |  |  |  |
| DN                                                                                 | 50 / 2"                                         | 80 / 3"     | 100 / 4"       | 150 / 6"       | 200 / 8"       |  |  |  |
|                                                                                    | 57 / 2.24                                       | 77 / 3.03   | 87 / 3.43      | 126 / 4.96     | 180 / 7.09     |  |  |  |
| a                                                                                  | a 57 / 2.24                                     | 1113.03     | (115 / 4.53)*  | (146 / 5.75)*  | (175 / 6.89)*  |  |  |  |
| b                                                                                  | 259 / 10.20                                     | 376 / 14.80 | 373 / 14.69    | 460 / 18.11    | 469 / 18.46    |  |  |  |
| Ь                                                                                  | 259 / 10.20                                     |             | (338 / 13.31)* | (427 / 16.81)* | (437 / 17.20)* |  |  |  |
| С                                                                                  | 150 / 5.91                                      | 200 / 7.87  | 225 / 8.86     | 280 / 11.02    | 350 / 13.78    |  |  |  |
| d                                                                                  | 180 / 7.09                                      | 250 / 0.94  | 300 / 11.81    | 350 / 13.78    | 560 / 22.05    |  |  |  |
| u                                                                                  | 100 / 7.09                                      | 250 / 9.84  | 300 / 11.81    | (405 / 15.94)* | (500 / 19.68)* |  |  |  |

<sup>\*</sup> Dimensions in brackets only for PVDF

| 1 | ٠,            |
|---|---------------|
| ١ | $\overline{}$ |
|   |               |
| × | >             |
| ı | >             |
| - |               |
|   | $\overline{}$ |
| • | _             |
|   | $\circ$       |
|   |               |
|   | =             |
|   |               |
|   |               |
|   |               |
|   | _             |
|   | $\equiv$      |
|   | $\overline{}$ |
|   | $\neg$        |
|   | =             |
|   | _             |
|   | ( )           |
|   | $\simeq$      |
|   | W             |
|   | ~             |
|   |               |
|   |               |
|   |               |


| Table 2: Material selection for housing |         |         |      |  |  |
|-----------------------------------------|---------|---------|------|--|--|
| Design                                  | Α       | В       | С    |  |  |
| Housing                                 | PE      | PP      | PVDF |  |  |
| Valve seat                              | PE      | PP      | PVDF |  |  |
| Sealing                                 | FPM     | FPM     | FPM  |  |  |
| Valve pallet                            | A, C, D | B, C, D | C, D |  |  |

Special Materials upon request

| Table 3: Material selection for vacuum valve pallet |                                   |                                   |                                  |                                 |  |  |  |
|-----------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|--|--|--|
| Design                                              | Α                                 | В                                 | С                                | D                               |  |  |  |
| Vacuum range (mbar)<br>(inch W.C.)                  | -6.0 up to -16<br>-2.4 up to -6.4 | -5.5 up to -16<br>-2.2 up to -6.4 | -9.5 up to -30<br>-3.8 up to -12 | -30 up to -100<br>-12 up to -40 |  |  |  |
| Valve pallet                                        | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Sealing                                             | PTFE                              | PTFE                              | PTFE                             | PTFE                            |  |  |  |
| Spindle guide                                       | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Weight                                              | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |

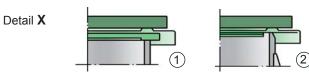
Special materials and other vacuum settings are available upon request

# Table 4: Flange connection type EN 1092-1; Form A ASME B16.5; 150 lbs FFSF other types upon request



The flow capacity chart has been determined with a calibrated and  $T\ddot{U}V$  certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

PROTEGO


for safety and environment

#### **Pressure and Vacuum Relief Valve**



#### PROTEGO® PV/EL





Settings:

Pressure: +2.0 mbar up to +210 mbar

+0.8 inch W.C. up to +84 inch W.C.

Vacuum: -14 mbar up to -35 mbar

-5.6 inch W.C. up to -14 inch W.C.

vacuum: -3.5 mbar up to -14 mbar

-1.4 inch W.C. up to -5.6 inch W.C.

for presssure up to max. + 150 mbar / 60.2 inch W.C.

Higher and lower settings upon request.

#### **Function and Description**

The PV/EL type PROTEGO® valve is a highly developed combined pressure and vacuum relief valve. It is primarily used as a safety device for relieving pressure and vacuum in tanks, containers and process engineering equipment. The valve offers reliable protection against overpressure and excessive vacuum. It prevents also the impermissible loss of product vapors close to the set pressure as well as the intake of air on the vacuum side close to set vacuum.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have

allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure or vacuum (MAWP or MAWV) of the tank and still safely vent the required mass flow. The opening characteristic is the same for presssure and vacuum relief.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high quality stainless steel and with precisely lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallet from sticking when sticky products are used, and they enable the use of corrosive media. After the excess pressure is discharged or the vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- · high flow capacity
- the valve pallet is guided within the housing to protect against freezing in cold weather
- · can be used in areas subject to an explosion hazard
- · self-actuated condensate drain
- · special design with lifting gear can be purchased

#### **Design Types and Specifications**

The valve pallets are weight-loaded. At set pressures greate than 60 mbar (24.1 inch W.C.), an elongated construction is used

There are two different designs

Pressure/vacuum relief valve in basic design PV/EL - -

Pressure/vacuum relief valve with heating jacket PV/EL - H

Additional special devices available upon request.

Any combination of vacuum and pressure levels can be set for the valve. When the difference between the pressure and vacuum exceeds 150 mbar / 60.2 inch W.C., special valve pallets are used.

| Table 1: Dime                                                                               | Dimensions in mm / inches       |                                 |                                 |                                 |                             |  |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------|--|--|--|
| To select the nominal size (DN), please use the flow capacity charts on the following pages |                                 |                                 |                                 |                                 |                             |  |  |  |
| DN                                                                                          | 50 / 2"                         | 50 / 2"                         | 80 / 3"                         | 80 / 3"                         |                             |  |  |  |
| Set pressure                                                                                | ≤ +60 mbar<br>≤ +24.1 inch W.C. | > +60 mbar<br>> +24.1 inch W.C. | ≤ +60 mbar<br>≤ +24.1 inch W.C. | > +60 mbar<br>> +24.1 inch W.C. | Dimensions for pressure/    |  |  |  |
| а                                                                                           | 308 / 12.13                     | 443 / 17.44                     | 308 / 12.13                     | 443 / 17.44                     | vacuum relief valve with    |  |  |  |
| b                                                                                           | 108 / 4.25                      | 108 / 4.25                      | 108 / 4.25                      | 108 / 4.25                      | heating jacket upon request |  |  |  |
| С                                                                                           | 165 / 6.50                      | 165 / 6.50                      | 167 / 6.57                      | 167 / 6.57                      |                             |  |  |  |
| d                                                                                           | 218 / 8.58                      | 218 / 8.58                      | 218 / 8.58                      | 218 / 8.58                      |                             |  |  |  |

| Table 2: Material selection for housing |                 |                                    |                                |  |  |
|-----------------------------------------|-----------------|------------------------------------|--------------------------------|--|--|
| Design                                  | В               | С                                  |                                |  |  |
| Housing<br>Heating jacket (PV/EL-H)     | Steel<br>Steel  | Stainless Steel<br>Stainless Steel |                                |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel                    | Special materials upon request |  |  |
| Weather hood                            | Steel           | Stainless Steel                    |                                |  |  |
| Protective mesh screen                  | Stainless Steel | Stainless Steel                    |                                |  |  |

| Table 3: Material selection for pressure valve pallet |                                    |                 |                                    |                 |                                                      |  |
|-------------------------------------------------------|------------------------------------|-----------------|------------------------------------|-----------------|------------------------------------------------------|--|
| Design                                                | Α                                  | В               | С                                  | D               |                                                      |  |
| Pressure range (mbar)<br>(inch W.C.)                  | +2.0 up to +3.5<br>+0.8 up to +1.4 |                 | >+14 up to +210<br>>+5.6 up to +84 |                 | Special material as well as higher set pressure upon |  |
| Valve pallet                                          | Aluminium                          | Stainless Steel | Stainless Steel                    | Stainless Steel | request                                              |  |
| Sealing                                               | FEP                                | FEP             | Metal to Metal                     | PTFE            |                                                      |  |

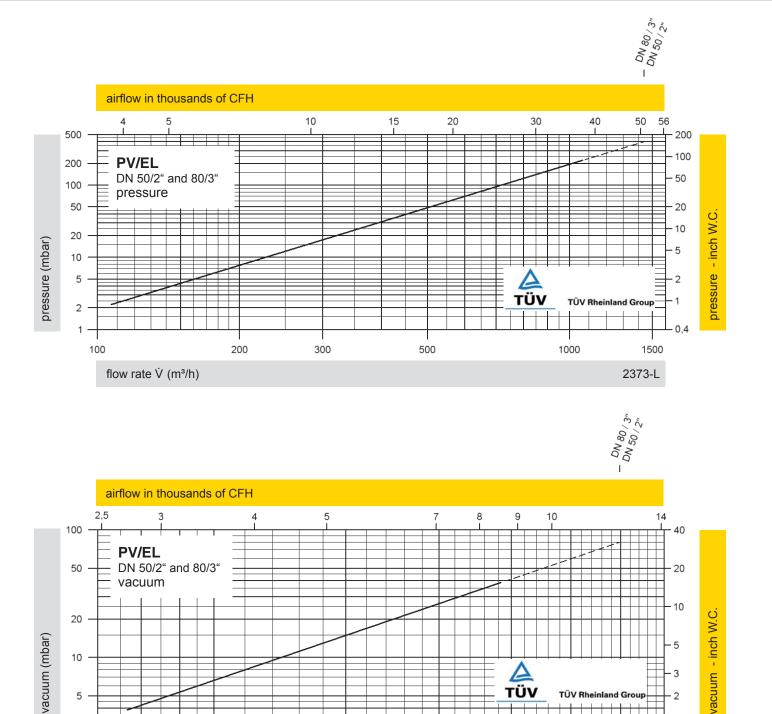
| Table 4: Material selection for vacuum valve pallet |                                    |                                     |                                   |                                   |                                                    |  |  |
|-----------------------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------------------|--|--|
| Design                                              | Α                                  | В                                   | С                                 | D                                 |                                                    |  |  |
| Vacuum range (mbar)<br>(inch W.C.)                  | -3.5 up to -5.0<br>-1.4 up to -2.0 | <-5.0 up to -14<br><-2.0 up to -5.6 | <-14 up to -35<br><-5.6 up to -14 | <-14 up to -35<br><-5.6 up to -14 | Special material as well as higher set vacuum upon |  |  |
| Valve pallet                                        | Aluminium                          | Stainless Steel                     | Stainless Steel                   | Stainless Steel                   | request                                            |  |  |
| Sealing                                             | FEP                                | FEP                                 | Metal to Metal                    | PTFE                              |                                                    |  |  |

| Table 5: Flange connection type |                          |
|---------------------------------|--------------------------|
| EN 1092-1; Form B1              | other types upon request |
| ASME B16.5; 150 lbs RFSF        | other types upon request |





3 -


70

flow rate V (m3/h)

#### **Pressure and Vacuum Relief Valve**

#### **Flow Capacity Charts**

#### PROTEGO® PV/EL



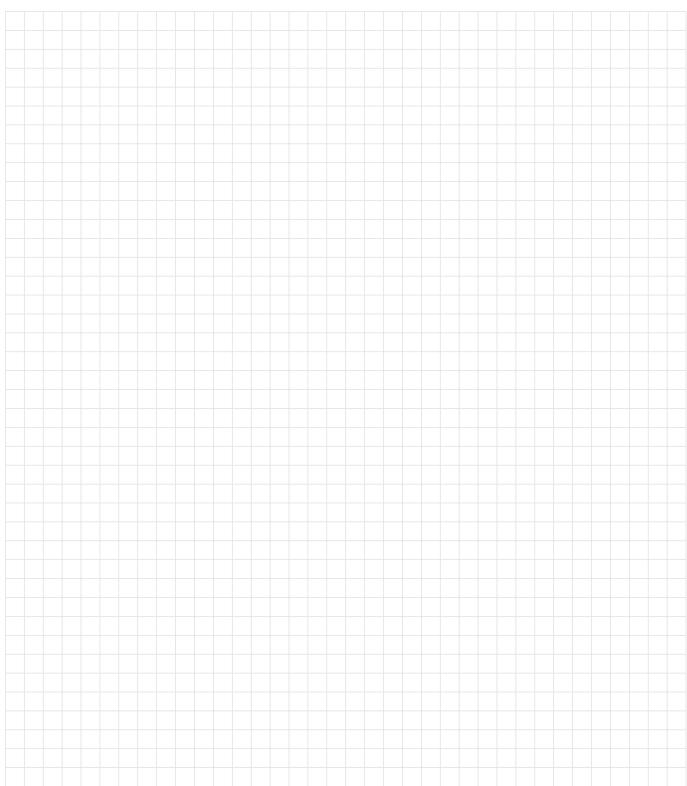
TÜV

200

**TÜV Rheinland Group** 

300

The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow V in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

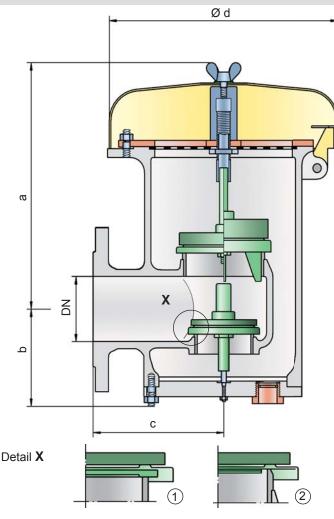

150

100

400

2374-L

## Notes:






#### **Pressure and Vacuum Relief Valve**



#### PROTEGO® PV/ELR



Settings:

Pressure: +2.0 mbar up to +210 mbar

+0.8 inch W.C. up to +84 inch W.C.

Vacuum: -14 mbar up to -50 mbar

-5.6 inch W.C. up to -20 inch W.C.

vacuum: -3.5 mbar up to -14 mbar

-1.4 inch W.C. up to -5.6 inch W.C.

for presssure up to max. + 150 mbar / 60.2 inch W.C.

Higher and lower settings upon request

#### **Function and Description**

The PV/ELR type PROTEGO® valve is a highly developed combined pressure and vacuum relief valve with excellent flow performance. Typically the valve is installed in the in- and outbreathing lines of tanks, vessels and process apparatus to protect against unallowable high and low pressure. The valve prevents emission losses almost up to the set pressure and prevents air intake almost up to set vacuum.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be

set just 10% below the maximum allowable working pressure or vacuum (MAWP or MAWV) of the tank and still safely vent the required mass flow. The opening characteristic is the same for presssure and vacuum relief.

Due to the highly developed manufacturing technology, the tank pressure is maintained up to the set pressure, with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high quality stainless steel and with precisely lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallet from sticking when sticky products are used, and they enable the use of corrosive media. After the excess pressure is discharged or the vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

#### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- · high flow capacity
- the valve pallet is guided within the housing to protect against freezing in cold weather
- · can be installed in explosion hazardous areas
- · self-actuated condensate drain
- · compact design saves space
- · special design with lifting gear can be purchased
- · maintenance friendly design

#### **Design Types and Specifications**

The valve pallets are weight-loaded. At set pressures greate than 35 mbar (14 inch W.C.), an elongated construction is used

There are two different designs:

Pressure/vacuum relief valve in basic design

PV/ELR - \_

Pressure/vacuum relief valve with heating jacket PV/ELR - H

cket PV/ELR - H

Additional special devices available upon request.

Any combination of vacuum and pressure levels can be set for the valve. When the difference between the pressure and vacuum exceeds 150 mbar/60.2 inch W.C., special valve pallets are used.

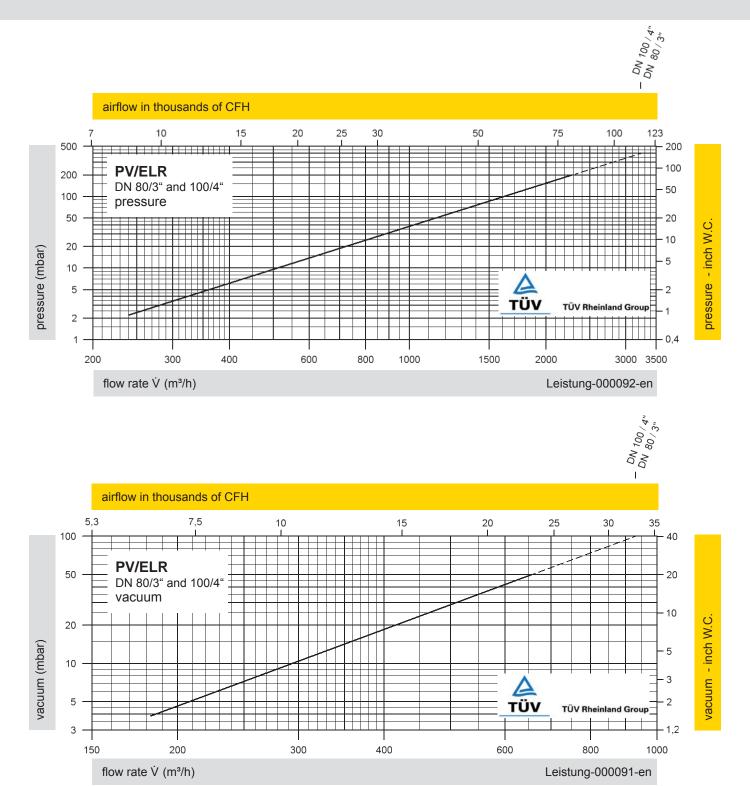
| Table 1: Dime                                                                               | Dimensions in mm / inches     |                               |                               |                               |                             |  |  |  |
|---------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------|--|--|--|
| To select the nominal size (DN), please use the flow capacity charts on the following pages |                               |                               |                               |                               |                             |  |  |  |
| DN                                                                                          | 80 / 3"                       | 80 / 3"                       | 100 / 4"                      | 100 / 4"                      |                             |  |  |  |
| Set pressure                                                                                | ≤ +35 mbar<br>≤ +14 inch W.C. | > +35 mbar<br>> +14 inch W.C. | ≤ +35 mbar<br>≤ +14 inch W.C. | > +35 mbar<br>> +14 inch W.C. | Dimensions for pressure/    |  |  |  |
| а                                                                                           | 345 / 13.58                   | 475 / 18.70                   | 345 / 13.58                   | 475 / 18.70                   | vacuum relief valve with    |  |  |  |
| b                                                                                           | 146 / 5.75                    | 146 / 5.75                    | 146 / 5.75                    | 146 / 5.75                    | heating jacket upon request |  |  |  |
| С                                                                                           | 218 / 8.58                    | 218 / 8.58                    | 218 / 8.58                    | 218 / 8.58                    |                             |  |  |  |
| d                                                                                           | 353 / 13.90                   | 353 / 13.90                   | 353 / 13.90                   | 353 / 13.90                   |                             |  |  |  |

| Table 2: Material selection for housing |                 |                                    |                                |  |  |  |
|-----------------------------------------|-----------------|------------------------------------|--------------------------------|--|--|--|
| Design                                  | В               | С                                  |                                |  |  |  |
| Housing<br>Heating jacket (PV/ELR-H)    | Steel<br>Steel  | Stainless Steel<br>Stainless Steel |                                |  |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel                    | Special materials upon request |  |  |  |
| Weather hood                            | Steel           | Stainless Steel                    |                                |  |  |  |
| Protective mesh screen                  | Stainless Steel | Stainless Steel                    |                                |  |  |  |

| Table 3: Material selection for pressure valve pallet |                                    |                 |                                    |                 |                                                      |  |
|-------------------------------------------------------|------------------------------------|-----------------|------------------------------------|-----------------|------------------------------------------------------|--|
| Design                                                | Α                                  | В               | С                                  | D               |                                                      |  |
| Pressure range (mbar)<br>(inch W.C.)                  | +2.0 up to +3.5<br>+0.8 up to +1.4 |                 | >+14 up to +210<br>>+5.6 up to +84 | ·               | Special material as well as higher set pressure upon |  |
| Valve pallet                                          | Aluminium                          | Stainless Steel | Stainless Steel                    | Stainless Steel | request                                              |  |
| Sealing                                               | FEP                                | FEP             | Metal to Metal                     | PTFE            |                                                      |  |

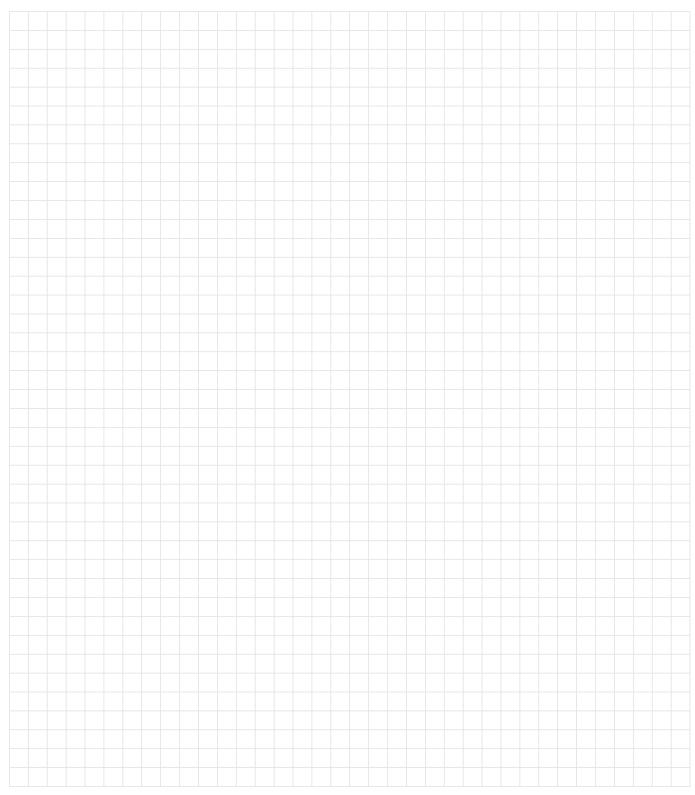
| Table 4: Material selection for vacuum valve pallet |                                    |                                     |                                   |                                   |                                                    |  |  |
|-----------------------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------------------|--|--|
| Design                                              | Α                                  | В                                   | С                                 | D                                 |                                                    |  |  |
| Vacuum range (mbar)<br>(inch W.C.)                  | -3.5 up to -5.0<br>-1.4 up to -2.0 | <-5.0 up to -14<br><-2.0 up to -5.6 | <-14 up to -50<br><-5.6 up to -20 | <-14 up to -50<br><-5.6 up to -20 | Special material as well as higher set vacuum upon |  |  |
| Valve pallet                                        | Aluminium                          | Stainless Steel                     | Stainless Steel                   | Stainless Steel                   | request                                            |  |  |
| Sealing                                             | FEP                                | FEP                                 | Metal to Metal                    | PTFE                              |                                                    |  |  |

| Table 5: Flange connection type |                          |
|---------------------------------|--------------------------|
| EN 1092-1; Form B1              | other types upon request |
| ASME B16.5; 150 lbs RFSF        |                          |






#### **Pressure and Vacuum Relief Valve**

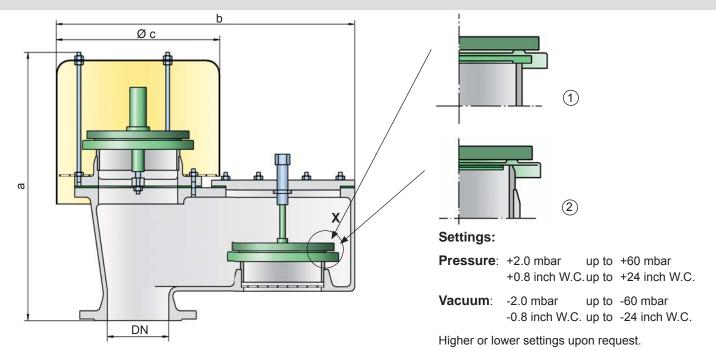

**Flow Capacity Charts** 

#### PROTEGO® PV/ELR



The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

## Notes:






#### **Pressure and Vacuum Relief Valve**



## PROTEGO® VD/SV



## **Function and Description**

The VD/SV type PROTEGO® valve is a highly developed pressure and vacuum relief valve with excellent flow performance. Typically the valve is installed in the in- and outbreathing lines of tanks, vessels and process apparatus to protect against unallowable high and low pressure. The valve prevents emission losses almost up to the set pressure and prevents air intake almost up to set vacuum.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure or vacuum (MAWP or MAWV) of the tank and still safely vent the required mass flow. The opening characteristic is the same for presssure and vacuum relief.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high quality stainless steel and with precisely lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged or the vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

## **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- · very high flow capacity
- the valve pallet is guided within the housing to protect against harsh weather conditions
- can be used in areas subject to explosion hazards
- · self draining
- · maintenance friendly design
- · best technology for API-tanks

## **Design Types and Specifications**

The valve pallets are weight-loaded. Higher pressures can be achieved upon request with a special spring-loaded design.

There are two different designs:

Pressure/vacuum valve in basic design VD/SV- -

Pressure/vacuum relief valve with heating jacket VD/SV- H

Additional special devices available upon request.

Any combination of vacuum and pressure levels can be set for the valve. When the difference between the pressure and vacuum exceeds 150 mbar / 60.2 inch W.C., special valve pallets are used.

| Table 1: | Table 1: Dimensions   Dimensions in mm / inches                                    |             |             |             |             |             |              |              |  |  |
|----------|------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--|--|
| To selec | To select the nominal size (DN), use the flow capacity chart on the following page |             |             |             |             |             |              |              |  |  |
| DN       | 40 / 1 ½"                                                                          | 50 / 2"     | 80 / 3"     | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"    | 300 / 12"    |  |  |
| а        | 396 / 15.59                                                                        | 396 / 15.59 | 497 / 19.57 | 519 / 20.43 | 654 / 25.75 | 757 / 29.80 | 802 / 31.57  | 802 / 31.57  |  |  |
| b        | 355 / 13.98                                                                        | 355 / 13.98 | 448 / 17.64 | 548 / 21.57 | 788 / 31.02 | 900 / 35.43 | 1030 / 40.55 | 1030 / 40.55 |  |  |
| С        | 200 / 7.87                                                                         | 200 / 7.87  | 295 / 11.61 | 295 / 11.61 | 465 / 18.31 | 550 / 21.65 | 650 / 25.59  | 650 / 25.59  |  |  |

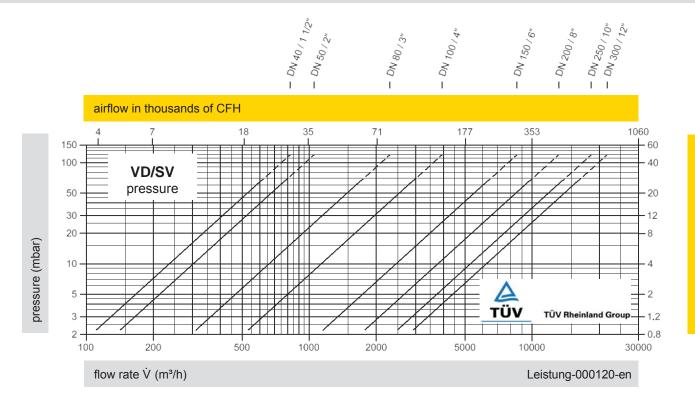
Dimensions of pressure and vacuum relief valves with heating jacket upon request

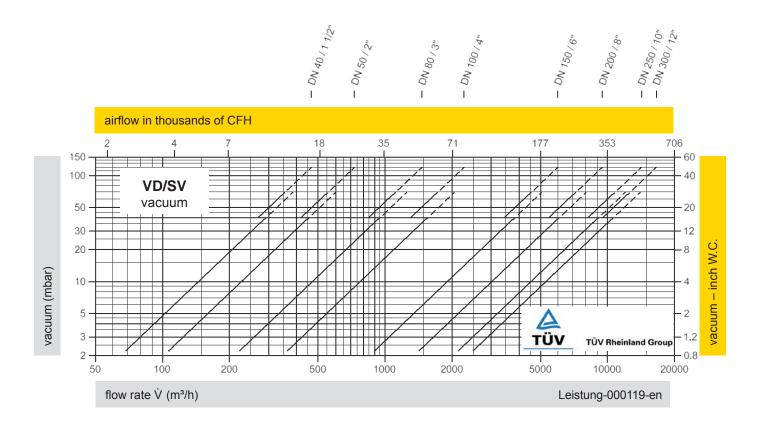
| Table 2: Material selection for housing |                 |                 |                                    |                                |  |  |  |  |
|-----------------------------------------|-----------------|-----------------|------------------------------------|--------------------------------|--|--|--|--|
| Design                                  | Α               | В               | С                                  |                                |  |  |  |  |
| Housing<br>Heating jacket (VD/SV-H)     | Aluminium<br>–  | Steel<br>Steel  | Stainless Steel<br>Stainless Steel | Option: Housing ECTFE-coated   |  |  |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel | Stainless Steel                    | Special materials upon request |  |  |  |  |
| Sealing                                 | PTFE            | PTFE            | PTFE                               |                                |  |  |  |  |
| Weather hood                            | Stainless Steel | Stainless Steel | Stainless Steel                    |                                |  |  |  |  |

| Table 3: Material selection for pressure valve pallet |                                    |                                     |                                   |                                  |                                   |                                  |  |  |
|-------------------------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|--|--|
| Design                                                | Α                                  | В                                   | С                                 | D                                | E                                 | F                                |  |  |
| Pressure range (mbar)<br>(inch W.C.)                  | +2.0 up to +3.5<br>+0.8 up to +1.4 | >+3.5 up to +14<br>>+1.4 up to +5.6 | >+14 up to +35<br>>+5.6 up to +14 | >+35 up to +60<br>>+14 up to +24 | >+14 up to +35<br>>+5.6 up to +14 | >+35 up to +60<br>>+14 up to +24 |  |  |
| Valve pallet                                          | Aluminium                          | Stainless Steel                     | Stainless Steel                   | Stainless Steel                  | Stainless Steel                   | Stainless Steel                  |  |  |
| Sealing                                               | FEP                                | FEP                                 | Metal to metal                    | Metal to metal                   | PTFE                              | PTFE                             |  |  |

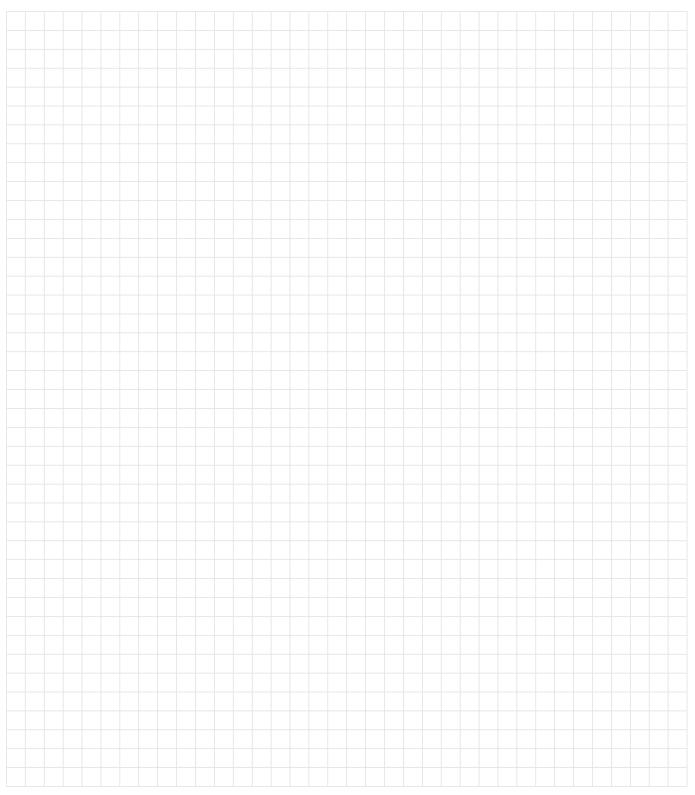
Special material as well as higher set pressure upon request

| Table 4: Material selection for vacuum valve pallet |                                    |                                     |                                |                                   |                                  |                                  |  |  |
|-----------------------------------------------------|------------------------------------|-------------------------------------|--------------------------------|-----------------------------------|----------------------------------|----------------------------------|--|--|
| Design                                              | Α                                  | В                                   | С                              | D                                 | E                                | F                                |  |  |
| Vacuum range (mbar)<br>(inch W.C.)                  | -2.0 up to -3.5<br>-0.8 up to -1.4 | <-3.5 up to -14<br><-1.4 up to -5.6 | <-14 up to -35 <-5.6 up to -14 | <-14 up to -35<br><-5.6 up to -14 | <-35 up to -60<br><-14 up to -24 | <-35 up to -60<br><-14 up to -24 |  |  |
| Valve pallet                                        | Aluminium                          | Stainless Steel                     | Stainless Steel                | Stainless Steel                   | Stainless Steel                  | Stainless Steel                  |  |  |
| Sealing                                             | FEP                                | FEP                                 | Metal to Metal                 | PTFE                              | Metal to Metal                   | PTFE                             |  |  |

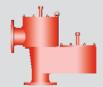

Special material as well as higher vacuum upon request


| Table 5: Flange connection type |                          |
|---------------------------------|--------------------------|
| EN 1092-1; Form B1              | other types upon request |
| ASME B16.5; 150 lbs RFSF        | other types upon request |




## Pressure and Vacuum Relief Valve Flow Capacity Charts

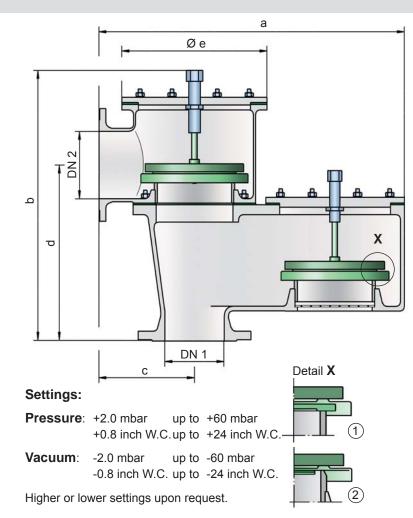
## PROTEGO® VD/SV






## Notes:








## **Pressure and Vacuum Relief Valve**

with pipe-away connection

## PROTEGO® VD/SV-PA(L)



## **Function and Description**

The VD/SV-PA(L) type PROTEGO® valve is a highly developed pressure and vacuum relief valve with excellent flow performance. Typically the valve is installed in the in- and outbreathing lines of tanks, vessels and process apparatus to protect against unallowable high and low pressure. The valve prevents emission losses almost up to the set pressure and prevents air intake almost up to set vacuum. The product vapors can be discharged through a collective line connected to the line flange on the pressure side.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure or vacuum (MAWP or MAWV) of the tank and still safely vent the required mass flow. The opening characteristic is the same for presssure and vacuum relief.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is achieved by valve seats made of high quality stainless steel and with precisely lapped valve pallets (1) or with an air cushion seal (2) in conjunction with high quality FEP diaphragm. The valve pallets are also available with a PTFE seal to prevent the valve pallets from sticking when sticky products are used and to enable the use of corrosive fluids. After the excess pressure is discharged or the vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- set pressure is close to the opening pressure which results in best possible pressure management of the system
- · very high flow capacity
- · can be used in areas subject to explosion hazards
- · self draining
- maintenance friendly design
- · best technology for API-tanks

## **Design Types and Specifications**

The valve pallets are weight-loaded. Higher pressures can be achieved upon request with a special spring-loaded design. Choose the model (L) if the discharge nozzle has a nominal diameter that is greater than the nominal diameter of the tank filler neck.

There are four different designs:

Pressure/vacuum valve in basic design VD/SV-PA - -

Pressure/vacuum valve with heating jacket VD/SV-PA - H

Pressure/vacuum relief valve with DN2 > DN1 VD/SV-PAL- -

Pressure/vacuum relief valve with DN2 > DN1 **VD/SV-PAL- H** with heating jacket

Additional special devices available upon request.

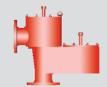
Any combination of vacuum and pressure setting can be achieved for the valve. When the difference between the pressure and vacuum exceeds 150 mbar (60.2 inch W.C.), special valve pallets are used.

| Table 1: Dime   | Table 1: Dimensions   Dimensions in mm / inches                                      |             |             |             |             |              |              |  |  |  |
|-----------------|--------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|--------------|--------------|--|--|--|
| To select the i | To select the nominal size (DN), use the flow capacity charts on the following pages |             |             |             |             |              |              |  |  |  |
| VD/SV-PA        |                                                                                      |             |             |             |             |              |              |  |  |  |
| DN 1            | 50 / 2"                                                                              | 80 / 3"     | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"    | 300 / 12"    |  |  |  |
| DN 2            | 50 / 2"                                                                              | 80 / 3"     | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"    | 300 / 12"    |  |  |  |
| а               | 405 / 15.95                                                                          | 480 / 18.90 | 600 / 23.62 | 805 / 31.69 | 925 / 36.42 | 1010 / 39.76 | 1010 / 39.76 |  |  |  |
| b               | 390 / 15.35                                                                          | 485 / 19.09 | 550 / 21.65 | 660 / 25.98 | 780 / 30.71 | 875 / 34.45  | 875 / 34.45  |  |  |  |
| С               | 150 / 5.91                                                                           | 180 / 7.09  | 200 / 7.87  | 250 / 9.84  | 300 / 11.81 | 305 / 12.01  | 305 / 12.01  |  |  |  |
| d               | 240 / 9.45                                                                           | 300 / 11.81 | 330 / 12.99 | 390 / 15.35 | 480 / 18.90 | 555 / 21.85  | 582 / 22.91  |  |  |  |
| е               | 165 / 6.50                                                                           | 192 / 7.56  | 240 / 9.45  | 350 / 13.78 | 390 / 15.35 | 460 / 18.11  | 460 / 18.11  |  |  |  |
| VD/SV-PAL       |                                                                                      |             |             |             |             |              |              |  |  |  |
| DN 1            | 50 / 2"                                                                              | 80 / 3"     | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"    | 300 / 12"    |  |  |  |
| DN 2            | 80 / 3"                                                                              | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"   | 300 / 12"    | 350 / 14"    |  |  |  |
| а               | 395 / 15.55                                                                          | 445 / 17.52 | 565 / 22.24 | 770 / 30.31 | 895 / 35.24 | 1010 / 39.76 | 1010 / 39.76 |  |  |  |
| b               | 400 / 15.74                                                                          | 485 / 19.09 | 550 / 21.65 | 655 / 25.79 | 775 / 30.51 | 875 / 34.45  | 885 / 34.45  |  |  |  |
| С               | 140 / 5.51                                                                           | 143 / 5.63  | 165 / 6.50  | 216 / 8.50  | 267 / 10.51 | 305 / 12.01  | 305 /12.01   |  |  |  |
| d               | 255 / 10.04                                                                          | 308 / 12.13 | 355 / 13.98 | 417 / 16.42 | 505 / 19.88 | 582 / 22.91  | 603 / 23.74  |  |  |  |
| е               | 165 / 6.50                                                                           | 192 / 7.56  | 240 / 9.45  | 350 / 13.78 | 390 /15.35  | 460 / 18.11  | 460 / 18.11  |  |  |  |

Dimensions of pressure and vacuum relief valves with heating jacket upon request

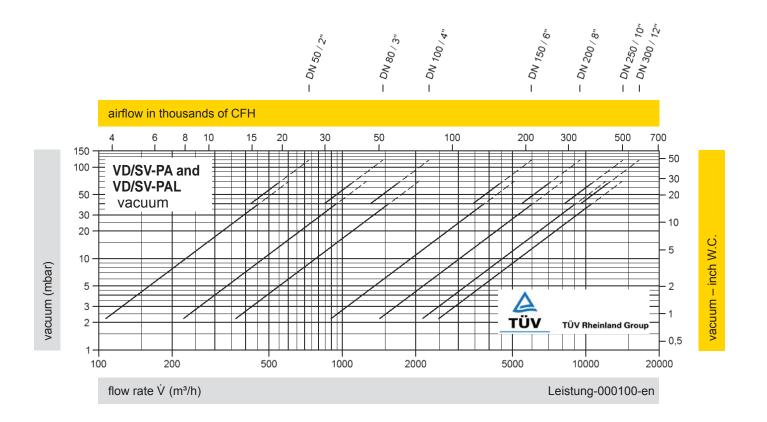
| Table 2: Material selection for housing   |                 |                 |                                    |                                   |  |  |  |  |  |
|-------------------------------------------|-----------------|-----------------|------------------------------------|-----------------------------------|--|--|--|--|--|
| Desing                                    | Α               | В               | С                                  |                                   |  |  |  |  |  |
| Housing<br>Heating jacket (VD/SV-PA(L)-H) | Aluminium<br>–  | Steel<br>Steel  | Stainless Steel<br>Stainless Steel | Option: Housing with ECTFE-lining |  |  |  |  |  |
| Valve seat                                | Stainless Steel | Stainless Steel | Stainless Steel                    | Special materials upon request    |  |  |  |  |  |
| Sealing                                   | PTFE            | PTFE            | PTFE                               |                                   |  |  |  |  |  |

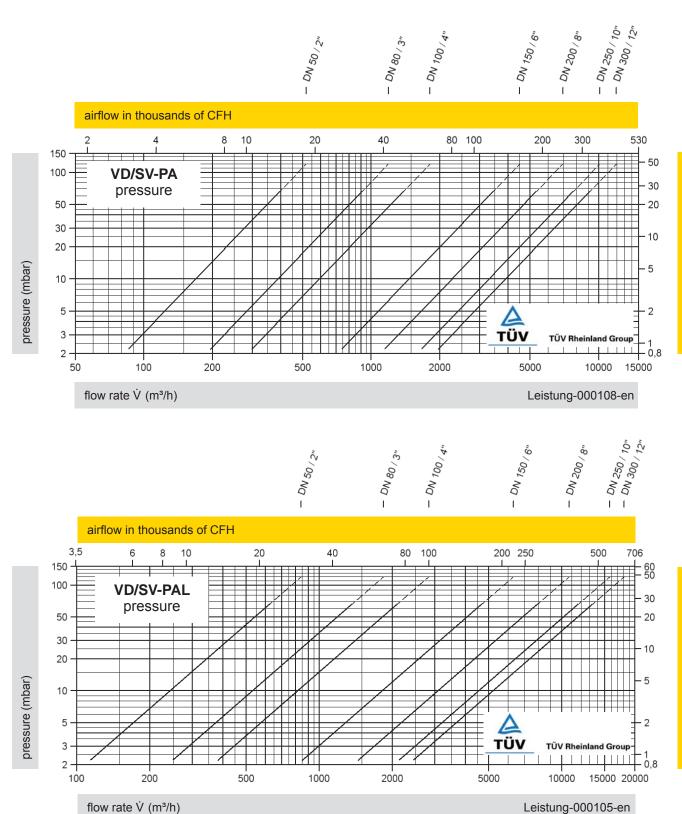
| Table 3: Material selection for pressure valve pallet |                                    |                                     |                 |                                  |                                   |                                  |  |  |
|-------------------------------------------------------|------------------------------------|-------------------------------------|-----------------|----------------------------------|-----------------------------------|----------------------------------|--|--|
| Design                                                | Α                                  | В                                   | С               | D                                | E                                 | F                                |  |  |
| Pressure range (mbar)<br>(inch W.C.)                  | +2.0 up to +3.5<br>+0.8 up to +1.4 | >+3.5 up to +14<br>>+1.4 up to +5.6 | - P             | >+35 up to +60<br>>+14 up to +24 | >+14 up to +35<br>>+5.6 up to +14 | >+35 up to +60<br>>+14 up to +24 |  |  |
| Valve pallet                                          | Aluminium                          | Stainless Steel                     | Stainless Steel | Stainless Steel                  | Stainless Steel                   | Stainless Steel                  |  |  |
| Sealing                                               | FEP                                | FEP                                 | Metal to Metal  | Metal to Metal                   | PTFE                              | PTFE                             |  |  |


Special material (alu-coated, titan, hastelloy) as well as higher set pressure upon request

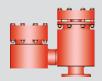
| Table 4: Material selection for vacuum valve pallet |                                    |                                     |                                   |                                  |                                   |                                  |  |  |
|-----------------------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|--|--|
| Design                                              | Α                                  | В                                   | С                                 | D                                | Е                                 | F                                |  |  |
| Vacuum range (mbar)<br>(inch W.C.)                  | -2.0 up to -3.5<br>-0.8 up to -1.4 | <-3.5 up to -14<br><-1.4 up to -5.6 | <-14 up to -35<br><-5.6 up to -14 | <-35 up to -60<br><-14 up to -24 | <-14 up to +35<br><-5.6 up to +14 | <-35 up to -60<br><-14 up to -24 |  |  |
| Valve pallet                                        | Aluminium                          | Stainless Steel                     | Stainless Steel                   | Stainless Steel                  | Stainless Steel                   | Stainless Steel                  |  |  |
| Sealing                                             | FEP                                | FEP                                 | Metal to Metal                    | Metal to Metal                   | PTFE                              | PTFE                             |  |  |

Special material (alu-coated, titan, hastelloy) as well as higher set vacuum upon request


| Table 5: Flange connection type |                              |
|---------------------------------|------------------------------|
| EN 1092-1; Form B1              | ath an trunca representation |
| ASME B16.5; 150 lbs RFSF        | other types upon request     |

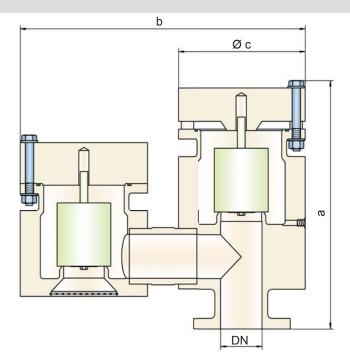

for safety and environment




# Pressure and Vacuum Relief Valve Flow Capacity Charts

## PROTEGO® VD/SV-PA(L)










## Pressure and Vacuum Relief Valve made of plastic

## PROTEGO® VD/KSM



## Settings:

## Pressure:

+6.0 mbar up to +100 mbar (DN 50/2")

+2.4 inch W.C. up to +40 inch W.C.

+4.0 mbar up to +100 mbar (DN 80/3")

+1.6 inch W.C. up to +40 inch W.C.

+4.5 mbar up to +100 mbar (DN 100/4" - DN 200/8")

+1.8 inch W.C. up to +40 inch W.C.

Vacuum:

-6.0 mbar up to -100 mbar (DN 50/2")

-2.4 inch W.C. up to -40 inch W.C.

-4.0 mbar up to -100 mbar (DN 80/3")

-1.6 inch W.C. up to -40 inch W.C.

-4.5 mbar up to -100 mbar (DN 100/4" - DN 200/8")

-1.8 inch W.C. up to -40 inch W.C.

Higher and lower settings upon request

## **Function and Description**

The PROTEGO® valve VD/KSM is a state-of-the-art pressure and vacuum relief valve with excellent flow performance made of highgrade synthetic material. Typically the valve is installed in the in- and out-breathing lines of tanks, vessels and process apparatus to protect against unallowable high or low pressure. The valve prevents emission losses almost up to the set pressure. The valve is a perfect solution for corrosive, polymerizing or sticky media.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure and vacuum (MAWP and MAWV) of the tank and still safely vent the required mass flow. The opening characteristic for pressure and vacuum side is the same.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is achieved by special valve seats made of high quality synthetic material or PTFE. After the excess pressure is discharged or vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

## **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · corrosion resistant valve
- · perfect solution for corrosive, polymerizing and sticky media
- weight reduction in comparison to steel/stainless steel
- vacuum side self draining and pressure side condensate drain
- · smooth surface
- · different plastics can be combined
- · maintenance friendly design

## **Design Types and Specifications**

The valve pallets are weight-loaded, and the highest pressure levels are only attained with metal discs.

Pressure/vacuum valve in basic design VD/KSM-

Additional special devices available upon request.

| Table 1: Dimensions   Dimensions in mm |                                                                                    |             |                            |                            |                              |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------|-------------|----------------------------|----------------------------|------------------------------|--|--|--|--|
| To sele                                | To select the nominal size (DN), use the flow capacity chart on the following page |             |                            |                            |                              |  |  |  |  |
| DN                                     | 50 / 2"                                                                            | 80 / 3"     | 100 / 4"                   | 150 / 6"                   | 200 / 8"                     |  |  |  |  |
| а                                      | 376 / 14.80                                                                        | 521 / 20.51 | 563 / 22.17 (542 / 21.34)* | 670 / 26.38 (681 / 26.81)* | 917 / 36.10 (952 / 37.48)*   |  |  |  |  |
| b                                      | 430 / 16.93                                                                        | 575 / 22.64 | 700 / 27.56 (675 / 26.57)* | 825 / 32.48 (880 / 34.65)* | 1190 / 46.85 (1100 / 43.31)* |  |  |  |  |
| С                                      | 180 / 7.09                                                                         | 250 / 9.84  | 300 / 11.81                | 350 / 13.78 (405 / 15.94)* | 560 / 22.05 (500 / 19.68)*   |  |  |  |  |

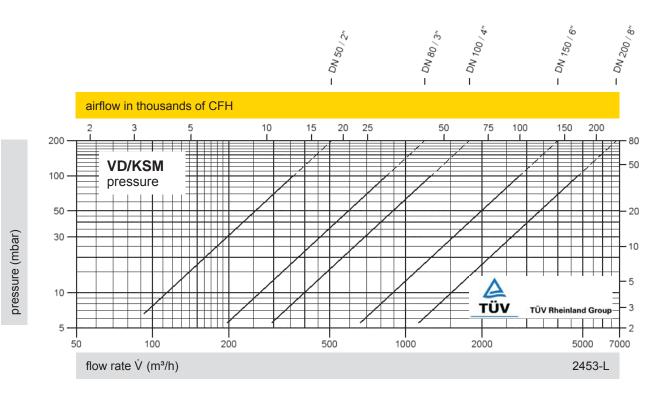
<sup>\*</sup> Dimensions in brackets only for PVDF

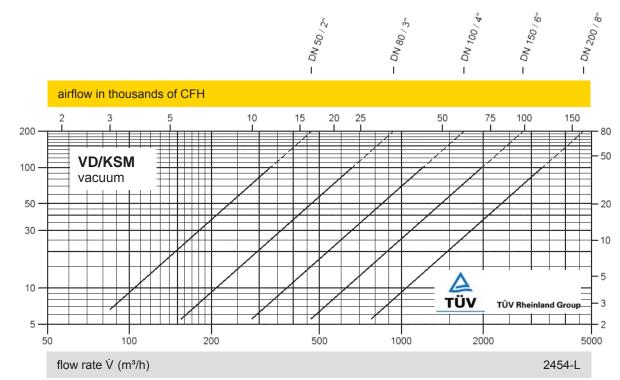
| Table 2: Material selection for the housing |         |         |      |                                  |  |  |  |  |
|---------------------------------------------|---------|---------|------|----------------------------------|--|--|--|--|
| Design                                      | Α       | В       | С    |                                  |  |  |  |  |
| Housing                                     | PE      | PP      | PVDF |                                  |  |  |  |  |
| Valve seat                                  | PE      | PP      | PVDF | Charial Materials upon request   |  |  |  |  |
| Sealing                                     | FPM     | FPM     | FPM  | - Special Materials upon request |  |  |  |  |
| Pressure valve pallet                       | A, C, D | B, C, D | C, D |                                  |  |  |  |  |
| Vacuum valve pallet                         | A, C, D | B, C, D | C, D |                                  |  |  |  |  |

| Table 3: Material selection for pressure valve pallet |                                   |                                   |                                  |                                 |  |  |  |
|-------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|--|--|--|
| Design                                                | A                                 | В                                 | С                                | D                               |  |  |  |
| Pressure range (mbar) (inch W.C.)                     | +6.0 up to +16<br>+2.4 up to +6.4 | +5.5 up to +16<br>+2.2 up to +6.4 | +9.5 up to +30<br>+3.8 up to +12 | +30 up to +100<br>+12 up to +40 |  |  |  |
| Valve pallet                                          | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Sealing                                               | PTFE                              | PTFE                              | PTFE                             | PTFE                            |  |  |  |
| Spindle guide                                         | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Weight                                                | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |

Special materials and other pressure settings are available upon request

| Table 4: Material selection for vacuum valve pallet |                                   |                                   |                                  |                                 |  |  |  |
|-----------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|--|--|--|
| Design                                              | Α                                 | В                                 | С                                | D                               |  |  |  |
| Vacuum range (mbar)<br>(inch W.C.)                  | -6.0 up to -16<br>-2.4 up to -6.4 | -5.5 up to -16<br>-2.2 up to -6.4 | -9.5 up to -30<br>-3.8 up to -12 | -30 up to -100<br>-12 up to -40 |  |  |  |
| Valve pallet                                        | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Sealing                                             | PTFE                              | PTFE                              | PTFE                             | PTFE                            |  |  |  |
| Spindle guide                                       | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Weight                                              | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |

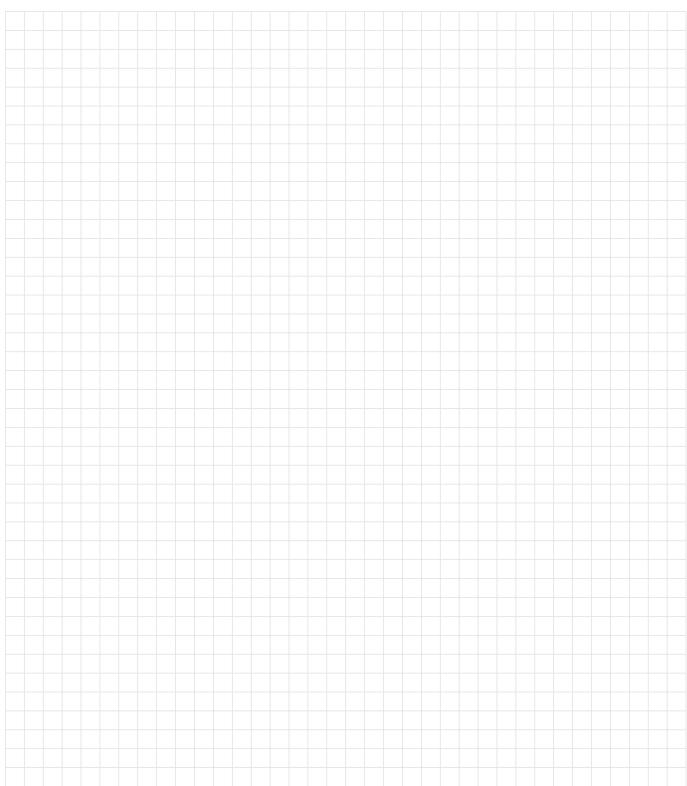

Special materials and other vacuum settings are available upon request


| Table 5: Flange connection type |                          |
|---------------------------------|--------------------------|
| EN 1092-1; Form A               | other types upon request |
| ASME B16.5; 150 lbs FFSF        | other types upon request |

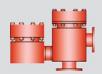


vacuum (mbar)

## PROTEGO® VD/KSM

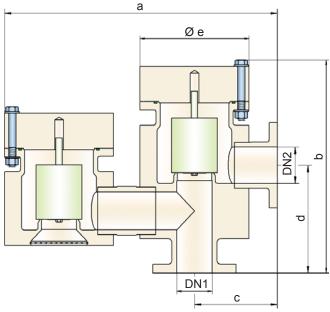






The flow capacity charts have been determined with a calibrated and TÜV certified flow capacity test rig. Volume flow  $\dot{V}$  in (m³/h) and CFH refer to the standard reference conditions of air ISO 6358 (20°C, 1bar). Conversion to other densities and temperatures refer to Vol. 1: "Technical Fundamentals".

vacuum - inch W.C.

## Notes:








## Pressure and Vacuum Relief Valve made of plastic

## PROTEGO® VD/KSM-PA



## Settings:

## Pressure:

+6.0 mbar up to +100 mbar (DN 50/2")

+2.4 inch W.C. up to +40 inch W.C.

+4.0 mbar up to +100 mbar (DN 80/3")

+1.6 inch W.C. up to +40 inch W.C.

+4.5 mbar up to +100 mbar (DN 100/4" - DN 200/8")

+1.8 inch W.C. up to +40 inch W.C.

Vacuum:

-6.0 mbar up to -100 mbar (DN 50/2")

-2.4 inch W.C. up to -40 inch W.C.

-4.0 mbar up to -100 mbar (DN 80/3")

-1.6 inch W.C. up to -40 inch W.C.

-4.5 mbar up to -100 mbar (DN 100/4" - DN 200/8")

-1.8 inch W.C. up to -40 inch W.C. Higher and lower settings upon request

## **Function and Description**

The PROTEGO® valve VD/KSM-PA is a state-of-the-art pressure and vacuum relief valve with excellent flow performance made of highgrade synthetic material. Typically the valve is installed in the in- and out-breathing lines of tanks, vessels and process apparatus to protect against unallowable high or low pressure. The valve prevents emission losses almost up to the set pressure. The valve is a perfect solution for corrosive, polymerizing or sticky media.

The device will start to open as soon as the set pressure is reached and only requires 10% overpressure to full lift. Continuous investments into research and development have allowed PROTEGO® to develop a low pressure valve which has the same opening characteristic as a high pressure safety relief valve. This "full lift type" technology allows the valve to be set just 10% below the maximum allowable working pressure and vacuum (MAWP and MAWV) of the tank and still safely vent the required mass flow. The opening characteristic for pressure and vacuum side is the same.

Due to our highly developed manufacturing technology the tank pressure is maintained up to set pressure with a tightness that is far superior to the conventional standard. This feature is achieved by special valve seats made of high quality synthetic material or PTFE. After the excess pressure is discharged or vacuum is compensated, the valve reseats and provides a tight seal.

The optimized fluid dynamic design of the valve body and valve pallet is a result of many years of research work, which allow a stable operation of the valve pallet and optimized performance resulting in reduction of product losses.

### **Special Features and Advantages**

- "full lift type" technology valve utilizes only 10% overpressure to reach full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- the set pressure is close to the opening pressure which results in best possible pressure management of the system
- the valve pallet is guided within the housing to protect against harsh weather conditions
- · corrosion resistant valve
- · perfect solution for corrosive, polymerizing and sticky media
- · weight reduction in comparison to steel/stainless steel
- vacuum side self draining and pressure side condensate drain
- · smooth surface
- · different plastics can be combined
- · maintenance friendly design

### **Design Types and Specifications**

The valve pallets are weight-loaded, and the highest pressure levels are only attained with metal discs.

Pressure/vacuum valve in basic design VD/KSM-PA-

Additional special devices available upon request.

| Table 1:                                                                           | Dimensions  | Dimensions in mm / inches |                            |                            |                              |  |  |  |  |
|------------------------------------------------------------------------------------|-------------|---------------------------|----------------------------|----------------------------|------------------------------|--|--|--|--|
| To select the nominal size (DN), use the flow capacity chart on the following page |             |                           |                            |                            |                              |  |  |  |  |
| DN1                                                                                | 50 / 2"     | 80 / 3"                   | 100 / 4"                   | 150 / 6"                   | 200 / 8"                     |  |  |  |  |
| DN2                                                                                | 50 / 2"     | 80 / 3"                   | 100 / 4"                   | 150 / 6"                   | 200 / 8"                     |  |  |  |  |
| а                                                                                  | 490 / 19.29 | 650 / 25.59               | 775 / 30.51 (750 / 29.53)* | 930 / 36.61 (958 / 37.72)* | 1260 / 49.61 (1200 / 47.24)* |  |  |  |  |
| b                                                                                  | 376 / 14.80 | 521 / 20.51               | 563 / 22.17 (523 / 20.59)* | 670 / 26.38 (651 / 25.63)* | 879 / 34.61 (912 / 35.91)*   |  |  |  |  |
| С                                                                                  | 150 / 5.91  | 200 / 7.87                | 225 / 8.86                 | 280 / 11.02                | 350 / 13.78                  |  |  |  |  |
| d                                                                                  | 200 / 7.87  | 245 / 9.65                | 300 / 11.81                | 370 / 14.57                | 590 / 23.23 (650 / 25.59)*   |  |  |  |  |
| е                                                                                  | 180 / 7.09  | 250 / 9.84                | 300 / 11.81                | 350 / 13.78 (405 / 15.94)* | 560 / 22.05 (500 / 19.68)*   |  |  |  |  |

<sup>\*</sup> Dimensions in brackets only for PVDF

| Table 2: Material selection for the housing |         |         |      |  |  |  |
|---------------------------------------------|---------|---------|------|--|--|--|
| Design                                      | Α       | В       | С    |  |  |  |
| Housing                                     | PE      | PP      | PVDF |  |  |  |
| Valve seat                                  | PE      | PP      | PVDF |  |  |  |
| Sealing                                     | FPM     | FPM     | FPM  |  |  |  |
| Pressure valve pallet                       | A, C, D | B, C, D | C, D |  |  |  |
| Vacuum valve pallet                         | A, C, D | B, C, D | C, D |  |  |  |

Special Materials upon request

| Table 3: Material selection for pressure valve pallet |                                   |                                   |                                  |                                 |  |  |  |
|-------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|--|--|--|
| Design                                                | Α                                 | В                                 | С                                | D                               |  |  |  |
| Pressure range (mbar) (inch W.C.)                     | +6.0 up to +16<br>+2.4 up to +6.4 | +5.5 up to +16<br>+2.2 up to +6.4 | +9.5 up to +30<br>+3.8 up to +12 | +30 up to +100<br>+12 up to +40 |  |  |  |
| Valve pallet                                          | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Sealing                                               | PTFE                              | PTFE                              | PTFE                             | PTFE                            |  |  |  |
| Spindle guide                                         | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |
| Weight                                                | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |

Special materials and other pressure settings are available upon request

| Table 4: Material selection for vacuum valve pallet |                                   |                                   |                                  |                                 |  |  |  |  |
|-----------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|--|--|--|--|
| Design                                              | Α                                 | В                                 | С                                | D                               |  |  |  |  |
| Vacuum range (mbar)<br>(inch W.C.)                  | -6.0 up to -16<br>-2.4 up to -6.4 | -5.5 up to -16<br>-2.2 up to -6.4 | -9.5 up to -30<br>-3.8 up to -12 | -30 up to -100<br>-12 up to -40 |  |  |  |  |
| Valve pallet                                        | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |  |
| Sealing                                             | PTFE                              | PTFE                              | PTFE                             | PTFE                            |  |  |  |  |
| Spindle guide                                       | PE                                | PE PP PVDF Hastello               |                                  | Hastelloy                       |  |  |  |  |
| Weight                                              | PE                                | PP                                | PVDF                             | Hastelloy                       |  |  |  |  |

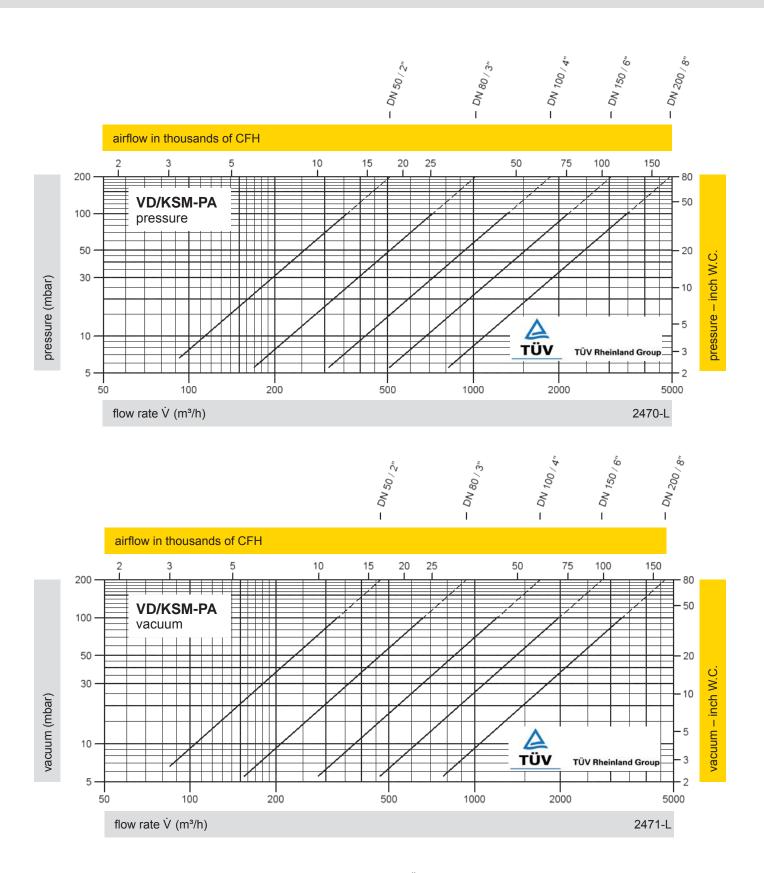
Special materials and other vacuum settings are available upon request

| Table 5: F | lange connect | tion type |
|------------|---------------|-----------|
|------------|---------------|-----------|

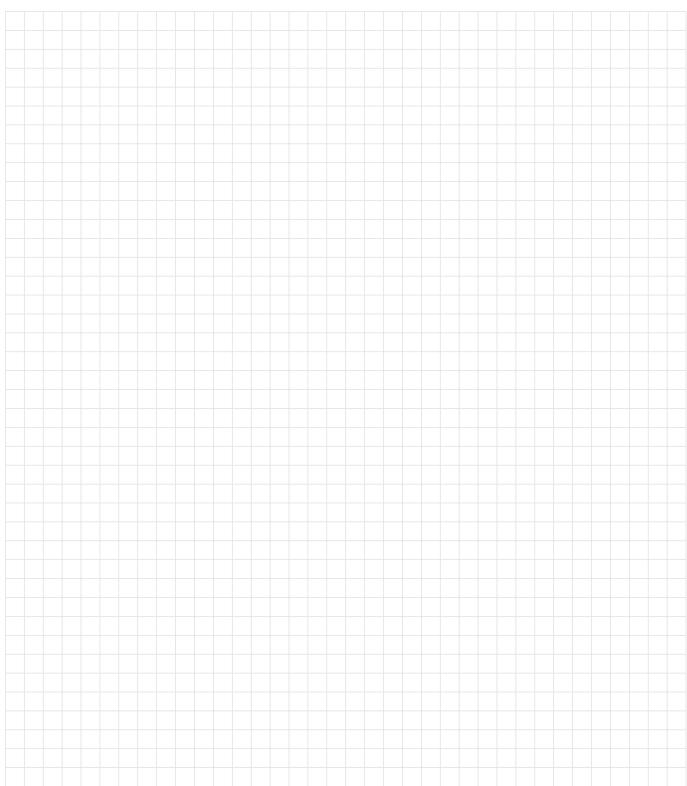
EN 1092-1; Form A

ASME B16.5; 150 lbs FFSF

other types upon request







## **Pressure and Vacuum Relief Valve**

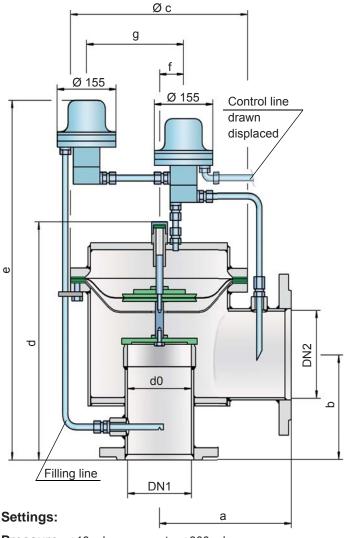
**Flow Capacity Charts** 

## PROTEGO® VD/KSM-PA



## Notes:








#### Pressure/Vacuum Relief Valve

#### Pilot-operated diaphragm valve

## PROTEGO® PM/(D)S



Pressure: +10 mbar up to +300 mbar

+4 inch W.C. up to +120 inch W.C.

**Vacuum**: -3.0 mbar up to -7 mbar

-1.2 inch W.C. up to -2.8 inch W.C.

Higher or lower settings upon request.

## **Function and Description**

The PM/(D)S type pilot-controlled PROTEGO® diaphragm valve is a highly developed valve for pressure and vacuum relief. It is primarily used as a safety device for outbreathing in tanks, containers, and process engineering equipment and it also offers reliable protection from vacuum and overpessure. It prevents the intake of air and unacceptable product vapor loss up to the set point. The valve can also be used as inbreathing valve. The main valve is directly controlled when it is exposed to a vacuum; e.g., it functions as a weight-loaded diaphragm valve. This valve is highly suitable under atmospheric conditions and for use in cryogenic service.

The main valve is controlled by a pilot valve. The pilot valve is controlled by the tank pressure. The tank medium does not continuously flow through the pilot. The set pressure is adjusted at the pilot valve by a corrosion-resistant and low-temperature-resistant permanent magnet.

As the operating pressure increases, the closing force acting on the main valve also rises; e.g. the valve tightness increases to prevent leakage until the set pressure is reached. After the valve responds, it immediately opens completely without any significant increase in pressure (pop open characteristic), and the nominal volumetric flow is discharged through a fully open valve. If this level is exceeded, the pressure increase follows the flow performance curve ( $\Delta p/\dot{v}$  curve). Up to the set pressure, the tank pressure is maintained with a tightness that is far superior to the conventional standard due to the superior manufacturing technology. This feature is achieved by valve seats made of high-grade stainless steel with precisely ground valve pallets. After the excess pressure is discharged or the vacuum is compensated, the valve reseats and provides a tight seal.

## **Special Features and Advantages**

- · high degree of safety due to double pilot
- controlled by corrosion-resistant, low-temperature-resistant permanent magnet
- the tank medium does not continuously flow through the pilot valve
- pop-open characteristic from a minimum pressure rise to full lift
- extreme tightness and hence least possible product losses and reduced environmental pollution
- set pressure is close to full lift pressure, which results in high level of design freedom and product savings
- · high flow capacity
- the control diaphragm of the main valve is shielded from low temperatures - high-level durability
- · can be used in areas subject to an explosion hazard
- · designed for use at low temperatures
- · self draining

#### **Design Types and Specifications**

The valve is equipped with either a control pilot valve or with one control and emergency pilot valve to ensure optimum operating safety in case of malfunctions or damage.

Two different designs are therefore available:

Basic design of pressure/vacuum relief valve with a **PM/S**-control pilot valve

Basic pressure/vacuum relief valve with a control pilot valve and additional emergency pilot valve

Additional special devices available upon request.

PM/DS-

| Table 1: DimensionsDimensions in mm / inches |                                                                                      |             |             |             |             |              |              |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|--------------|--------------|--|--|--|
| To selec                                     | To select the nominal size (DN), use the flow capacity charts on the following pages |             |             |             |             |              |              |  |  |  |
| DN1                                          | 80 / 3"                                                                              | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"   | 300 / 12"    | 300 / 12"    |  |  |  |
| DN2                                          | 100 / 4"                                                                             | 150 / 6"    | 200 / 8"    | 250 / 10"   | 300 / 12"   | 350 / 14"    | 400 / 16"    |  |  |  |
| а                                            | 225 / 8.86                                                                           | 250 / 9.87  | 325 / 12.80 | 375 / 14.76 | 450 / 17.72 | 500 / 19.69  | 500 / 19.69  |  |  |  |
| b                                            | 150 / 5.91                                                                           | 175 / 6.89  | 225 / 8.86  | 250 / 9.84  | 270 / 10.63 | 300 / 11.81  | 325 / 12.79  |  |  |  |
| С                                            | 275 / 10.83                                                                          | 330 / 12.99 | 445 / 17.52 | 550 / 21.65 | 665 / 26.18 | 785 / 30.91  | 785 / 30.91  |  |  |  |
| d                                            | 370 / 14.57                                                                          | 425 / 16.73 | 530 / 20.87 | 605 / 23.82 | 675 / 26.57 | 785 / 30.91  | 835 / 32.87  |  |  |  |
| е                                            | 615 / 24.21                                                                          | 685 / 26.97 | 770 / 30.31 | 825 / 32.48 | 935 / 36.81 | 1005 / 39.57 | 1055 / 41.53 |  |  |  |
| f                                            | 35 / 1.38                                                                            | 40 / 1.57   | 40 / 1.57   | 50 / 1.97   | 50 /1.97    | 50 / 1.97    | 50 / 1.97    |  |  |  |
| g                                            | 160 / 6.30                                                                           | 195 / 7.68  | 250 / 9.84  | 315 / 12.40 | 370 / 14.57 | 425 / 16.73  | 425 / 16.73  |  |  |  |

| Table 2: Material selection for housing |                 |                 |                                |  |  |  |  |
|-----------------------------------------|-----------------|-----------------|--------------------------------|--|--|--|--|
| Design                                  | Α               | В               |                                |  |  |  |  |
| Housing                                 | Aluminium       | Stainless Steel |                                |  |  |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel |                                |  |  |  |  |
| Sealing                                 | KL-C-4106       | KL-C-4106       | Special materials upon request |  |  |  |  |
| Main diaphragm protection               | Stainless Steel | Stainless Steel | Special materials upon request |  |  |  |  |
| Pilot lines                             | Stainless Steel | Stainless Steel |                                |  |  |  |  |
| Pilot housing                           | Stainless Steel | Stainless Steel |                                |  |  |  |  |
| Pilot diaphragm                         | FEP             | FEP             |                                |  |  |  |  |

| Table 3: Material Selection for Valve pallet |                                      |                                      |                                      |  |  |  |  |
|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|
| Design                                       | Α                                    | В                                    | С                                    |  |  |  |  |
| Pressure range (mbar)<br>(inch W.C.)         | -3.0 up to -4.0*<br>-1.2 up to -1.6* | -4.0 up to -5.0*<br>-1.6 up to -2.0* | -5.0 up to -7.0*<br>-2.0 up to -2.8* |  |  |  |  |
| Valve pallet                                 | Aluminium                            | Stainless Steel                      | Stainless Steel                      |  |  |  |  |
| Diaphragm                                    | FEP                                  | FEP                                  | FEP                                  |  |  |  |  |
| Diaphragm pallet                             | Aluminium                            | Aluminium                            | Stainless Steel                      |  |  |  |  |

Special materials upon request

The pressure setting can be combined with any vacuum setting

| Table 4: | Table 4: Coefficient of Discharge |            |            |            |             |             |             |  |  |
|----------|-----------------------------------|------------|------------|------------|-------------|-------------|-------------|--|--|
|          |                                   |            |            |            |             |             |             |  |  |
| DN1      | 80 / 3"                           | 100 / 4"   | 150 / 6"   | 200 / 8"   | 250 / 10"   | 300 / 12"   | 300 / 12"   |  |  |
| DN2      | 100 / 4"                          | 150 / 6"   | 200 / 8"   | 250 / 10"  | 300 / 12"   | 350 / 14"   | 400 / 16"   |  |  |
| do       | 81 / 3.19                         | 107 / 4.21 | 160 / 6.30 | 208 / 8.19 | 260 / 10.24 | 310 / 12.20 | 310 / 12.20 |  |  |
| К        | 0.68                              | 0.68       | 0.63       | 0.59       | 0.58        | 0.54        | 0.61        |  |  |

DN1 = Size Inlet

DN2 = Size Outlet

d0 = Orifice Diameter (mm / inches)
K = Coefficient of Discharge

| Table | 5: FI | ange | connec | tion | tvpe |
|-------|-------|------|--------|------|------|
|       |       |      |        |      |      |

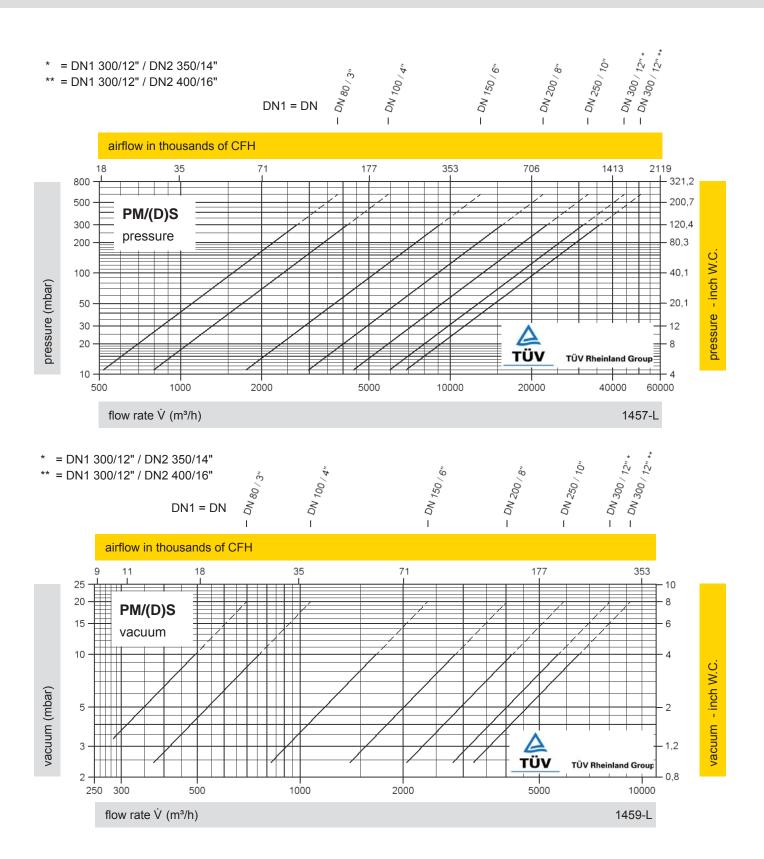
EN 1092-1; Form B1

ASME B16.5; 150 lbs RFSF

other types upon request



225


<sup>\*</sup> The indicated vacuum ranges depend on the nominal sizes and can differ.



## Pressure/Vacuum relief valve

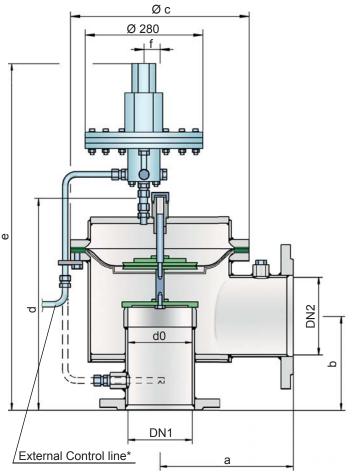
## **Flow Capacity Charts**

## PROTEGO® PM/(D)S



## PROTEGO® PM/(D)S

| Project Data Sheet                           |                                                                        |       |  |               |                   |     |  |  |
|----------------------------------------------|------------------------------------------------------------------------|-------|--|---------------|-------------------|-----|--|--|
| Project:                                     |                                                                        |       |  |               |                   |     |  |  |
| Engineering:                                 |                                                                        |       |  |               |                   |     |  |  |
| End-user:                                    |                                                                        |       |  |               |                   |     |  |  |
|                                              |                                                                        |       |  |               |                   |     |  |  |
| relief type:                                 | relief type: pressure only                                             |       |  |               |                   |     |  |  |
| reliei type.                                 | pressure and vacuum                                                    |       |  |               |                   |     |  |  |
| medium:                                      | process and recogniti                                                  | +     |  |               |                   |     |  |  |
| boiling point:                               |                                                                        |       |  | °C            |                   |     |  |  |
| molar mass:                                  |                                                                        |       |  | g/mol         |                   |     |  |  |
| total backpressure:                          |                                                                        |       |  | mbar or incl  | mbar or inch W.C. |     |  |  |
| dynamic backpressure:                        |                                                                        |       |  | mbar or incl  | mbar or inch W.C. |     |  |  |
| static (superimposed) back                   | kpressure:                                                             |       |  | mbar or incl  | n W.C.            |     |  |  |
| inlet pressure drop:                         |                                                                        |       |  | mbar or incl  | n W.C.            |     |  |  |
| set pressure:                                |                                                                        |       |  | mbar or incl  | mbar or inch W.C. |     |  |  |
| set vacuum:                                  |                                                                        |       |  | mbar or incl  | mbar or inch W.C. |     |  |  |
| material:                                    |                                                                        |       |  |               |                   |     |  |  |
| required discharge per val                   | ve:                                                                    |       |  | kg/h or lb/hr | kg/h or lb/hr     |     |  |  |
| required vacuum capacity per valve at +20°C: |                                                                        |       |  | m³/h or SCF   | Н                 |     |  |  |
| flange connection:                           |                                                                        |       |  | EN 1092-1     |                   | JIS |  |  |
| Fill in and □ tick off, if applica           | Fill in and □ tick off, if applicable, delete unit, if not applicable. |       |  |               |                   |     |  |  |
| signed:                                      |                                                                        | date: |  |               |                   |     |  |  |






#### Pressure/Vacuum Relief Valve

#### Pilot-operated diaphragm valve

## PROTEGO® PM-HF



### Settings:

#### Pressure:

+10 mbar up to +1034 mbar +4 inch W.C. up to +413.6 inch W.C.

#### Vacuum:

-3 mbar up to -7 mbar (DN 80/3") -1.2 inch W.C. up to -2.8 inch W.C.

-2.2 mbar up to -7 mbar (DN100/4" - DN 300/12")

-0.88 inch W.C. up to -2.8 inch W.C. Higher or lower settings upon request.

## **Function and Description**

The PROTEGO® Type PM-HF pilot-controlled diaphragm valve is a highly developed valve for pressure and vacuum relief. Primarily used as a safety device for outbreathing in tanks, vessels, and process engineering equipment it also offers reliable protection from vacuum and overpressure. It prevents intake of air and unacceptable product vapor loss up to and until the setto-operate pressure is reached. The valve can be used as an inbreathing device as well. In such an application, the main valve is directly controlled when exposed to a vacuum, i.e. it functions as a weight-loaded diaphragm valve.

The main valve is controlled by a pilot valve. The latter in turn is controlled by the tank pressure. A small amount fluid stored in the tank released into the atmosphere by the pilot when the valve opens. The set-to-operate pressure is adjusted on the pilot valve by increasing or decreasing (as appropriate) the tension of a spring.

As the working pressure rises, the closing force acting on the main valve increases, i.e. the valve's tight-sealing is enhanced until the set-to-operate pressure is reached, thus preventing leakage. Once the valve has commenced to lift it opens fully within a 10% pressure rise or the opening pressure difference and the nominal volumetric flow is discharged through a fully open valve. If and when this level is exceeded the pressure increase will follow the performance curve ( $\Delta p/\dot{V}$  curve). From set pressure to full capacity (fully open valve) the pressure increase is 100% in case of vacuum venting/inbreathing function.

Due to the sophisticated manufacturing technology, the tank pressure is maintained up to the set-to-operate pressure, with seal-tight requirements far above common standards being met. This feature is achieved through valve seats made of high-grade stainless steel with precisely ground valve pallets. Once the excess pressure is relieved or pressure below atmospheric balanced out, the valve reseats and seals tight again.

## **Special Features and Advantages**

- · controlled by corrosion-resistant pilot valve
- small amount fluid stored in the tank released into the atmosphere by the pilot when the valve opens
- max. 10% Technology for minimum pressure increase until full lift
- seals extremely tight; hence, least possible product losses and reduced impact on the environment
- set-to-operate pressure close to the opening pressure; hence, best possible pressure management of the system.
- control diaphragm of the main valve shielded from low temperatures Long service life
- · high flow capacity
- · suited for use in hazardous areas
- Field-Test-Connection on request
- · Field-Test-Kit on request

#### **Design Types and Specifications**

Basic design of pressure/vacuum relief valve with a **PM-HF** control pilot valve

Additional special devices available upon request.

\* It is recommended that an external control line be provided with direct connection to the tank.

| Table 1: Dimensions   Dimensions in mm / inches                                      |             |             |             |             |              |              |              |  |
|--------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--|
| To select the nominal size (DN), use the flow capacity charts on the following pages |             |             |             |             |              |              |              |  |
| DN1                                                                                  | 80 / 3"     | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"    | 300 / 12"    | 300 / 12"    |  |
| DN2                                                                                  | 100 / 4"    | 150 / 6"    | 200 / 8"    | 250 / 10"   | 300 / 12"    | 350 / 14"    | 400 / 16"    |  |
| а                                                                                    | 225 / 8.86  | 250 / 9.87  | 325 / 12.80 | 375 / 14.76 | 450 / 17.72  | 500 / 19.69  | 500 / 19.69  |  |
| b                                                                                    | 150 / 5.91  | 175 / 6.89  | 225 / 8.86  | 250 / 9.84  | 270 / 10.63  | 300 / 12.81  | 300 / 12.81  |  |
| С                                                                                    | 275 / 10.83 | 330 / 12.99 | 445 / 17.52 | 550 / 21.65 | 665 / 26.18  | 785 / 30.91  | 785 / 30.91  |  |
| d                                                                                    | 370 / 14.57 | 425 / 16.73 | 515 / 20.28 | 590 / 23.23 | 675 / 26.57  | 785 / 30.91  | 785 / 30.91  |  |
| е                                                                                    | 763 / 30.04 | 770 / 30.31 | 923 / 36.34 | 977 / 38.46 | 1032 / 40.63 | 1148 / 45.20 | 1198 / 47.17 |  |
| f                                                                                    | 35 / 1.38   | 40 / 1.57   | 40 / 1.57   | 50 / 1.97   | 50 / 1.97    | 50 / 1.97    | 50 / 1.97    |  |

| Table 2: Material selection for housing |                 |                             |                                |  |  |  |
|-----------------------------------------|-----------------|-----------------------------|--------------------------------|--|--|--|
| Design                                  | Α               | В                           |                                |  |  |  |
| Housing                                 | Aluminium       | Stainless Steel             |                                |  |  |  |
| Valve seat                              | Stainless Steel | Stainless Steel             |                                |  |  |  |
| Sealing                                 | KL-C-4106       | KL-C-4106                   | Chariel materials upon request |  |  |  |
| Main diaphragm protection               | Stainless Steel | Stainless Steel             | Special materials upon request |  |  |  |
| Pilot lines                             | Stainless Steel | Stainless Steel             |                                |  |  |  |
| Pilot housing Aluminium                 |                 | Aluminium / Stainless Steel |                                |  |  |  |
| Pilot diaphragm                         | FEP             | FEP                         |                                |  |  |  |

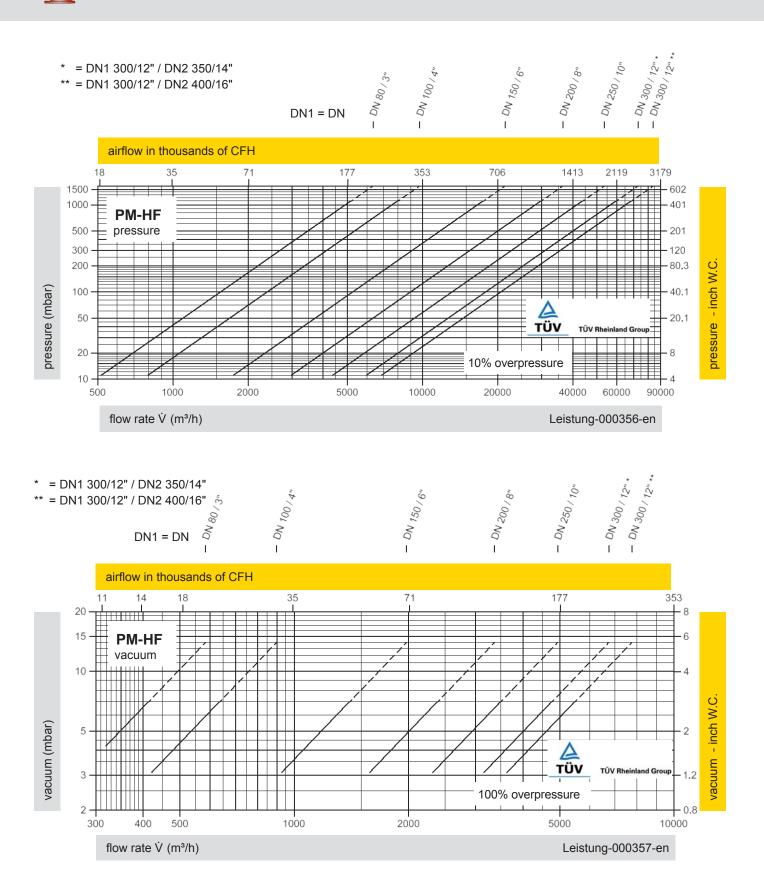
| Table 3: Coefficient of Discharge |           |            |            |            |             |             |             |  |
|-----------------------------------|-----------|------------|------------|------------|-------------|-------------|-------------|--|
| DN1                               | 80 / 3"   | 100 / 4"   | 150 / 6"   | 200 / 8"   | 250 / 10"   | 300 / 12"   | 300 / 12"   |  |
| DN2                               | 100 / 4"  | 150 / 6"   | 200 / 8"   | 250 / 10"  | 300 / 12"   | 350 / 14"   | 400 / 16"   |  |
| do                                | 81 / 3.19 | 107 / 4.21 | 160 / 6.30 | 208 / 8.19 | 260 / 10.24 | 310 / 12.20 | 310 / 12.20 |  |
| К                                 | 0.68      | 0.68       | 0.63       | 0.59       | 0.58        | 0.54        | 0.61        |  |

DN1 = Size Inlet DN2 = Size Outlet

d0 = Orifice Diameter (mm / inches)K = Coefficient of Discharge

## **Table 4: Flange connection type** EN 1092-1; Form B1

ASME B16.5; 150 lbs RFSF


other types upon request



## Pressure/Vacuum relief valve

## **Flow Capacity Charts**

## PROTEGO® PM-HF



## PROTEGO® PM-HF

| Project Data Sheet                           |                              |           |  |                   |                   |     |  |  |
|----------------------------------------------|------------------------------|-----------|--|-------------------|-------------------|-----|--|--|
| Project:                                     |                              |           |  |                   |                   |     |  |  |
| Engineering:                                 |                              |           |  |                   |                   |     |  |  |
| End-user:                                    |                              |           |  |                   |                   |     |  |  |
|                                              |                              |           |  |                   |                   |     |  |  |
| relief type:                                 | relief type: pressure only   |           |  |                   |                   |     |  |  |
| 7.                                           | pressure and vacuum          |           |  |                   |                   |     |  |  |
| medium:                                      |                              |           |  |                   |                   |     |  |  |
| boiling point:                               |                              |           |  | °C                |                   |     |  |  |
| molar mass:                                  |                              |           |  | g/mol             |                   |     |  |  |
| total backpressure:                          |                              |           |  | mbar or incl      | mbar or inch W.C. |     |  |  |
| dynamic backpressure:                        |                              |           |  | mbar or inch W.C. |                   |     |  |  |
| static (superimposed) bac                    | kpressure:                   |           |  | mbar or inch W.C. |                   |     |  |  |
| inlet pressure drop:                         |                              |           |  | mbar or incl      | mbar or inch W.C. |     |  |  |
| set pressure:                                |                              |           |  | mbar or incl      | mbar or inch W.C. |     |  |  |
| set vacuum:                                  |                              |           |  | mbar or inch W.C. |                   |     |  |  |
| material:                                    |                              |           |  |                   |                   |     |  |  |
| required discharge per val                   | ve:                          |           |  | kg/h or lb/hi     | kg/h or lb/hr     |     |  |  |
| required vacuum capacity per valve at +20°C: |                              |           |  | m³/h or SCF       | FH                |     |  |  |
| flange connection:                           |                              |           |  | EN 1092-1         |                   | JIS |  |  |
| Fill in and □ tick off, if applica           | able, delete unit, if not ap | olicable. |  |                   |                   |     |  |  |
| signed:                                      |                              | date:     |  |                   |                   |     |  |  |



